TRABAJO ESPECIAL DE GRADO

EVALUACIÓN DE LOS SISTEMAS DE ENFRIAMIENTO DE LA REFINERÍA SAN ROQUE (PDVSA-Oriente)

Presentado ante la Ilustre Universidad Central de Venezuela por el Br. Guzmán A., Víctor J. para optar al Título de Ingeniero Químico

Caracas, 2008

TRABAJO ESPECIAL DE GRADO

EVALUACIÓN DE LOS SISTEMAS DE ENFRIAMIENTO DE LA REFINERÍA SAN ROQUE (PDVSA-Oriente)

TUTOR ACADÉMICO: Profa. Nólides Guzmán, Ph.D.

TUTOR INDUSTRIAL: Ing. Nelson Torrealba

Presentado ante la Ilustre
Universidad Central de Venezuela
por el Br. Guzmán A., Víctor J.
para optar al Título
de Ingeniero Químico

Caracas, 2008

Los abajo firmantes, miembros del Jurado designado por el Consejo de Escuela Ingeniería Química, para evaluar el Trabajo Especial de Grado presentado por el Bachiller Víctor Javier Guzmán Alvarado, titulado:

"Evaluación de los sistemas de enfriamiento de la refinería San Roque (PDVSA-Oriente)"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudio conducente al Título de Ingeniero Químico, sin que ello signifique que se hacen solidarios con las ideas expuestas por el autor, lo declaran APROBADO.

Prof. Mary Luz Alonso Jurado Prof. Andrés Rosales

Profa. Nólides Guzmán, Ph.D

Tutora

DEDICATORIA

Dedicada a mi madre Maria Venicia Alvarado Iroba por su inmenso amor y por su esfuerzo en ayudarnos a mí y a mis hermanos a lograr las metas propuestas.

Adicionalmente, dedico mi esfuerzo y empeño a la memoria de mi abuelo Domingo Alvarado que fue un gran amigo y mi ejemplo a seguir por su constancia y dedicación al trabajo.

AGRADECIMIENTOS

Mi madre, mi padre, a mis tíos, mis hermanos y mis primos, por apoyarme y ayudarme en todo momento para alcanzar mis metas.

A todos los trabajadores de la Refinería San Roque y especialmente a Rogelio Rodríguez, Leonel Rosas, Ramón Vivas, Rafael Martínez, Carlos López, Albino Fermín, Alexis Rodríguez, Gualberto Chacin, y del laboratorio a Yanis Martínez y Juan Farias por haberme ayudado a realizar el trabajo especial de grado y por enseñarme parte de sus conocimientos en las áreas en la cual laboran cada uno de ellos.

Guzmán A., Víctor J.

EVALUACIÓN DE LOS SISTEMAS DE ENFRIAMIENTO DE LA REFINERÍA SAN ROQUE (PDVSA-ORIENTE)

Tutor Académico: Profa. Nólides Guzmán, Ph.D. Tutor Industrial: Ing. Nelson Torrealba. Tesis. Caracas, U.C.V. Facultad de Ingeniería. Escuela de Ingeniería Química. Año 2008, 109 p.

Palabras Claves: Intercambiadores de calor, Torres de enfriamiento.

Resumen. La Refinería San Roque, principal productor de parafina en el país, posee entre sus diferentes procesos equipos de enfriamiento, calentamiento y condensación de los diferentes fluidos obtenidos de la separación realizada por las columnas atmosférica y de vacío. Dichos equipos se llaman intercambiadores de calor y su uso principal es transmitir energía desde un fluido caliente a un fluido más frío, con el fin de disminuir o aumentar la temperatura de uno de los productos para un proceso posterior. Otros equipos utilizados son las torres de enfriamiento utilizadas para reducir la temperatura de las aguas que circulan por los diferentes procesos con el fin de reutilizarlas.

Para mediados del primer trimestre de 2009, se llevará a cabo la parada de planta de la refinería; por ende, se deben evaluar los equipos para determinar cuáles deben ser sacados fuera de servicio para su limpieza, siendo esto último el objetivo principal de este trabajo. La evaluación consistió en determinar, por medio de cálculos de transferencia de calor y masa, la eficiencia y el ensuciamiento que estos equipos poseen en la actualidad. Los resultados de la evaluación indican que deben ser sacados fuera de servicio cuatro intercambiadores tipo horquilla y dos tipo tubo y carcasa, debido a que las incrustaciones de las paredes internas de estos equipos impiden la transferencia de calor requerida en el proceso. Por otra parte, se debe cambiar la relación de liquido-gas de la torre de enfriamiento para lograr el enfriamiento adecuado.

ÍNDICE GENERAL

CONTENIDO	Páginas
Índice de Tablas	. vii
Índice de Figuras	. X
Lista de Símbolos	. xv
Lista de Símbolos Griegos	. xix
Abreviatura de equipos e instrumentos	. XX
CAPÍTULO I. INTRODUCCIÓN	. 1
1.1. Planteamiento del Problema	. 1
1.2. Objetivos	. 2
Objetivo General	. 2
Objetivos Específicos	. 2
1.3. Antecedentes	. 2
CAPÍTULO II. REVISIÓN BIBLIOGRÁFICA	. 4
2.1 Intercambiadores de Calor	. 4
2.1.1 Intercambiadores de Doble Tubo	. 6
2.1.2 Intercambiadores de Tubo y Carcasa	. 7
2.1.3 Variaciones en la Presión	. 8
2.1.4 Diferencia de Temperatura Media	
Logarítmica (ΔTML)	. 10
2.1.5 Factores de Ensuciamiento	. 14
2.1.6 Diferencia entre Evaluación y Diseño de los Intercambiadores de Calor	. 16
2.2. Torres de Enfriamiento	. 18
2.2.1 Eficiencia de Torres de Enfriamiento	. 22
2.3 Ecuación del Teorema de Bernoulli	24

CAPÍTULO III. METODOLOGÍA EXPERIMENTAL	28
3.1. Caracterización de los diferentes fluidos que	
son enfriados en los distintos equipos térmicos	28
3.2 Caracterización a través de ensayos ASTM D86	
y ASTM 1160 de los crudos que entran a la	
columna atmosférica	28
3.2.1 Procedimiento para realizar el ensayo	
ASTM D86	29
3.2.2 Procedimiento para realizar el ensayo	
ASTM 1160	31
3.3 Determinación de las dimensiones de los equipos	
de intercambio de calor	32
3.4 Simulación en PROII de la planta de crudo y vacío	
de la Refinería San Roque	33
3.5 Validación de los resultados de la simulación	
usando los datos de planta disponibles, así como	
los resultados de la caracterización de los crudos	33
3.6 Generación de DT&I	33
3.7 Evaluación de la Torre de Enfriamiento	34
3.8 Evaluación de los Intercambiadores de Calor	35
3.9 Balance de Masa de las Aguas	44
3.10 Automatización de los cálculos de ingeniería	44
CAPÍTULO IV. RESULTADOS Y ANÁLISIS	45
4.1 Resultados de la validación de la simulación de la	
planta de crudo y vacío	46
4.1.1 Destilado liviano	46
4.1.2 Diesel liviano	47
4.1.3 Nafta	47
4.1.4 Destilado pesado.	48
4 1 5 Residuo de vacío	49

	dos de la evaluación de la torre de enfriamiento	50
4.3 Resulta	ados de la evaluación de intercambiadores	
tipo hor	quilla	54
4.4 Resulta	ados de la evaluación de intercambiadores	
tipo tub	o y carcasa	55
4.5 Resulta	ados de la evaluación de los condensadores	59
4.6 Resulta	ados de la automatización de los cálculos de	
Ingenie	ería	60
	O V. CONCLUSIONES	61
CADÍTUL A	NA DECOMENDACIONES	(2
CAPITULO	O VI. RECOMENDACIONES	62
,	,	
CAPITULO	O VII. REFERENCIAS BIBLIOGRÁFICAS	64
	O VII. REFERENCIAS BIBLIOGRAFICAS	64 66
ANEXOS		-
ANEXOS Anexo A:		66
ANEXOS Anexo A: Anexo B: Anexo C:	Procedimiento de cálculo evaluativo de un intercambiador tipo horquilla	66 67 78
ANEXOS Anexo A: Anexo B: Anexo C: Anexo D:	Procedimiento de cálculo evaluativo de un intercambiador tipo horquilla	66 67 78 90
ANEXOS Anexo A: Anexo B: Anexo C: Anexo D:	Procedimiento de cálculo evaluativo de un intercambiador tipo horquilla	66 67 78
ANEXOS Anexo A: Anexo B: Anexo C: Anexo D: Anexo E: Anexo F:	Procedimiento de cálculo evaluativo de un intercambiador tipo horquilla Procedimiento de cálculo evaluativo de un intercambiador tipo tubo y carcasa Cálculo tipo para determinar el flujo de agua de entrada al intercambiador IC-15 Hoja tema de los intercambiadores Estudiados Detalles del diseño de un condensador de rapores que salen del AC-1 DT&I distribucion de agua a las plantas de	66 67 78 90
ANEXOS Anexo A: Anexo B: Anexo C: Anexo D: Anexo E: Anexo F:	Procedimiento de cálculo evaluativo de un intercambiador tipo horquilla Procedimiento de cálculo evaluativo de un intercambiador tipo tubo y carcasa Cálculo tipo para determinar el flujo de agua de entrada al intercambiador IC-15 Hoja tema de los intercambiadores Estudiados Detalles del diseño de un condensador de rapores que salen del AC-1	666 677 788 900 933 101

ÍNDICE DE TABLAS

CONTENIDO	Páginas
Tabla Nº 2.1 Caídas de Presión Típicas para	
Intercambiadores de Calor de Tubo y	
Carcasa, Doble Tubo y Enfriamiento por Aire	. 9
Tabla Nº 2.2 Ecuaciones para calcular las Caídas	
de Presión	. 9
Tabla N° 2.3 Datos Base para el Diseño y Evaluación de	
Intercambiadores de calor	. 16
Tabla Nº 2.4 Variación del Factor de Fricción de Darcy	
con Respecto al Régimen de Flujo	. 25
Tabla Nº 4.1 Identificación de los intercambiadores de	
calor evaluados	. 45
Tabla Nº 4.2 Resultados del ensayo ASTM D86 del	
laboratorio y el simulador del destilado	
liviano	46
Tabla Nº 4.3 Resultados del ensayo ASTM D86 del	
laboratorio y el simulador del diesel	
liviano	47
Tabla Nº 4.4 Resultados del ensayo ASTM D86 del	
laboratorio y el simulador de la Nafta	48
Tabla Nº 4.5 Resultados del ensayo ASTM 1160 del	
laboratorio y el simulador del destilado	
pesado	48
Tabla Nº 4.6 Resultados del ensayo ASTM 1160 del	
laboratorio y el simulador del residuo de	
vacío	49
Tabla Nº 4.7 Caudales de agua de los intercambiadores	50

Tabla Nº 4.8 Especificación de diseño de la torre de	
enfriamiento T-1	51
Tabla Nº 4.9 Resultados de la evaluación de la torre de	
enfriamiento T-1	52
Tabla Nº 4.10 Resultados de la evaluación de los	
intercambiadores tipo Horquilla	54
Tabla Nº 4.11 Resultados de las temperaturas de salida de	
los intercambiadores tipo tubo y carcasa	56
Tabla Nº 4.12 Caídas de presión de los intercambiadores	
tipo tubo y carcasa	57
Tabla Nº 4.13 Eficiencia y factor de obstrucción de los	
intercambiadores tipo tubo y carcasa	58
Tabla Nº 4.14 Resultados de la evaluación de los	
condensadores tipo tubo y carcasa	59
Tabla N° D.1 Hoja tema del intercambiador IC-15	93
Tabla N° D.2 Hoja tema del intercambiador IC-2A/2B	94
Tabla N° D.3 Hoja tema del intercambiador IC-10	95
Tabla N° D.4 Hoja tema del intercambiador IC-10A	96
Tabla N° D.5 Hoja tema del intercambiador IP-7	97
Tabla N° D.6 Hoja tema del intercambiador IP-7A con dos	
pasos por los tubos	98
Tabla N° D.6 Hoja tema del intercambiador IP-7A con 4	
pasos por los tubos	99
Tabla N° E.1 Detalles generales del diseño	100
Tabla N° E.2 Análisis de resistencias térmicas	100
Tabla N° E.3 Coeficientes del diseño	101
Tabla N° E.4 ΔTML & Flujo del diseño	101
Tabla Nº E.5 Caídas de presión del diseño	102
Tabla Nº E.6 Caídas de presión del flujo lado carcasa del	
diseño	102

Tabla Nº E.7 Detalles mecánicos del diseño: Boquillas	103
Tabla N° E.8 Detalles mecánicos del diseño: Tubos	103
Tabla Nº E.9 Detalles mecánicos del diseño: Deflectores	103
Tabla N° E.10 Análisis de vibración del diseño	104
Tabla N° E.11 Análisis de resonancia acústica del diseño	104
Tabla N° E.12 Hoja tema del diseño	106

ÍNDICE DE FIGURAS

CONTENIDO	Páginas
Figura N° 2.1 Tipos de aletas	6
Figura N° 2.2 Nubes de vapor en el interior de la carcasa	8
Figura N° 2.3 Representación de los perfiles de temperatura	
para flujo paralelo y contracorriente	11
Figura N° 2.4 Representación de los perfiles de temperatura	
en condensación	12
Figura N° 2.5 Localización de los factores de obstrucción en	
el interior de la carcasa de un intercambiador	14
Figura N° 2.6 Diagrama de procedimiento general para el	
diseño y evaluación de intercambiadores de	
calor	17
Figura N° 2.7 Tipos comunes de empaques de una torre de	
Enfriamiento	19
Figura N° 2.8 Sección diferencial de una torre de	
Enfriamiento	20
Figura N° 2.9 Representación gráfica de la curva	
característica y curva de demanda de	
una torre de enfriamiento	22
Figura N° 2.10 Ubicación de la gama de puntos de operación	
en el diagrama del fabricante de una bomba	27
Figura N° 3.1 Equipo de destilación atmosférica ASTM D86	30
Figura N° 3.2 Montaje usado para el análisis ASTM 1160	32
Figura N° 3.3 Diagrama de los intercambiadores IC-3 y 5	35
Figura N° 3.4 Modificacion de la entrada de agua de los	
intercambiadores IC-3 y 5	36
Figura N° 3.5 Diagrama de los intercambiadores IC-4 y 6	36

Figura N° 3.6 Modificación de accesorios a la línea de agua	
a la salida del intercambiador IC-6	37
Figura N° 3.7 Diagrama de los intercambiadores IP-7 y 7A	38
Figura Nº 3.8 Diagrama de los condensadores IC-2A/2B de	
los vapores de tope de la torre atmosférica	39
Figura Nº 3.9 Equipo láser medidor de temperaturas de	
superficies	40
Figura Nº 3.10 Diagrama de los condensadores IC-11 y 12	
de los vapores de tope de la torre de vacío	41
Figura Nº 3.11 Diagrama de los intercambiadores IC-10/10A	42
Figura Nº 3.12 Diagrama de los intercambiadores IC-15	43
Figura Nº 4.1 Zona de acanalamiento en el área de	
distribución de agua de la torre de enfriamiento	53
Figura Nº 4.2 Hoja de cálculo usada para la evaluación de	
los intercambiadores de calor	60
Figura Nº 5.1 Modelo de bandejas para la distribución de	
agua por toda el área de transferencia	62
Figura Nº 5.2 Arreglo de la propuesta de diseño del	
intercambiador IC-2C, en el arreglo actual de	
condensadores IC-2A/2B	63
Figura N° E.1 Detalles principales del diseño	107
Figura Nº E.2 Trazado de tubos del diseño	108

LISTA DE SÍMBOLOS

```
a = \text{Superficie interfacial específica (pie}^2/\text{pie}^3)
A = \text{Área de transferencia (pie}^2)
A_{FlujoAnular} = Área de flujo anular (pie<sup>2</sup>)
B = Espaciamiento entre deflectores (in)
C = Constante relacionada con el diseño de una torre de enfriamiento, obtenida a partir de
      la intersección de curva característica con L/G=1 (adimensional).
C_a = Capacitancia del flujo de agua ({}^{Btu}/_{h^{*\circ}F})
C_{air} = Capacitancia del flujo de aire ({}^{Btu}/_{h^{*\circ}F})
C_{min} = Capacitancia mínima ({}^{Btu}/_{h^{*\circ}F})
Cp_a = \text{Capacidad Calorífica del agua } (Btu/_{lh^{*\circ}F})
Cp_{air} = Capacidad Calorífica del aire \binom{Btu}{lb^{*\circ}F}
D_C = Diámetro interno de la carcasa (in)
D_e = Diámetro equivalente (in)
D_e^{\prime} = Diámetro equivalente para caídas de presión (in)
D_{eT} = Diámetro externo del tubo (in)
D_{iT} = Diámetro interno del tubo (in)
e = Eficiencia de intercambiadores (adimensional)
e_{\tau} = Eficiencia de torres de enfriamiento (adimensional)
f = Factor de fricción para calcular la caídas de presión ya sea en lado tubo o en lado
     carcasa (adimensional)
F= Factor de corrección del \Delta TML para equipos de múltiples pasos (adimensional)
f_d = Factor de Darcy (adimensional)
f_{dTD} = Factor de Darcy determinado a turbulencia desarrollada (adimensional)
f_{\lambda} = Factor de corrección de la entalpía del aire saturado con vapor de agua ( ^{Btu}\!/_{\!b} )
g = \text{Aceleración de la gravedad } (4.18 \times 10^8 \frac{pie}{h^2})
G_{\rm C} = Velocidad másica en lado carcasa ( {}^{lb}\!\!/_{h^*pie^2} )
G_s' = \text{Velocidad másica superficial del gas seco} \left( \frac{lb}{h^* ft^2} \right)
G_s = Velocidad másica del gas seco (\frac{lb}{h})
G_T = Velocidad másica en lado tubo (\frac{lb}{h^* nie^2})
h = \text{Coeficiente convectivo de transferencia de calor} \left( \frac{Btu}{h^* nie^2 * \circ_F} \right)
h_i = Coeficiente de transferencia de calor por el lado tubo ({}^{\textit{Btu}/}_{h^*pie^2*^\circ F})
```

 $h_o = \text{Coeficiente}$ de transferencia de calor por el lado anular $\binom{Btu}{h^*nie^2*\circ F}$

```
h_{io} = Coeficiente de transferencia de calor por el lado tubo referido al diámetro externo
\left(\frac{Btu}{h^*nie^2*\circ F}\right)
H = \text{Energ}ía expresada en altura de fluido (pie)
H_1 = Entalpía de entrada a la torre de enfriamiento de una mezcla de vapor y aire (\frac{Btu}{b})
H_2 = Entalpía de salida de la torre de enfriamiento de una mezcla de vapor y aire (^{Btu}/_{lb})
H_B = Cabezal de la bomba (pie)
H_{\rm \it eS} = Entalpía del aire saturado con vapor de agua a la entrada de la torre de enfriamiento
Hf = Pérdidas por fricción (pie)
H_{mair} =Entalpía promedio de una mezcla de vapor y aire ( ^{Btu}/_{lb} )
H_S = Entalpía del aire saturado con vapor de agua (^{Btu}/_b)
H_{Sm} =Entalpía del aire saturado con vapor de agua, evaluada a la temperatura promedio
        del agua ( Btu/lb )
H_{sS} = Entalpía del aire saturado con vapor de agua a la salida de la torre de enfriamiento
HTU = Altura global de unidad de transferencia referido a la fase gas (pie)
K = Coeficiente de resistencia a la entrada y salida (adimensional)
K' = Coeficiente de transferencia de masa para la fase gaseosa (\frac{lb}{s^*nie^2})
k_C = Conductividad térmica promedio del fluido que pasa por el lado carcasa \binom{Btu}{h^*fi^{*\circ}F}
k_T = Conductividad térmica promedio del fluido que pasa por el lado tubo \binom{Btu}{h^*ft^{*\circ}F}
k_{\rm W} = {
m Conductividad} térmica del material del tubo ({}^{\it Btu}\!/_{h^*ft^{*\circ}F})
L = \text{Longitud (pie)}
L' = \text{Carga liquida} \left( \frac{lb}{h^* ft^2} - de - piso \right)
m_a = Flujo másico del agua líquida (\frac{lb}{h})
m_{ea} = Flujo másico del agua líquida a la entrada del equipo de intercambio ( ^{lb}\!\!/_{\!h} )
m_{ep} = Flujo másico del fluido de proceso a la entrada del equipo de intercambio (\frac{b}{h})
m^{L}_{ep} = Flujo másico del fluido de proceso a la entrada del equipo de intercambio en fase
        liquida (\frac{lb}{h})
m^{V}_{ep} = Flujo másico de vapor del fluido de proceso a la entrada del equipo de intercambio
(\frac{Lb}{s})
```

 m_p = Flujo másico del fluido de procesos ($\frac{lb}{h}$)

```
m_{sp} = Flujo másico del fluido de proceso a la salida del equipo de intercambio (\frac{lb}{h})
m^{L}_{sp} = Flujo másico del fluido de proceso a la salida del equipo de intercambio en fase
       liquida (\frac{lb}{h})
m^{V}_{sp} =Flujo másico de vapor del fluido de proceso a la salida del equipo de intercambio
       (lb/h)
m^{M}_{sp} = Flujo másico de una mezcla liquido - vapor del fluido de proceso a la salida del
        equipo de intercambio (1b/h)
N = Número de deflectores (adimensional)
N_{H} = Número de Horquillas (adimensional)
N_P = \text{Número de pasos (adimensional)}
N_T = Número de tubos (adimensional)
NTU = Número de unidad de transferencia (adimensional)
NTU = Número de unidad de transferencia usado en la insdustria, número de Merkel
         (adimensional)
P^* = Ganancia de temperatura del fluido que va por los tubos (adimensional)
P = Presión puntual (psig)
P_1 = Presión determinada en el punto inicial (psig)
P_2 = Presión determinada en el punto final (psig)
Q_a = Calor transmitido calculado a partir del flujo de agua en un tiempo inicial (^{Btu}/_h)
Q_{aR} = Calor transmitido calculado a partir del flujo de agua después de un cierto tiempo
       de servicio del equipo (Btu/<sub>h</sub>)
Q_D = Flujo de calor de diseño (^{Btu}/_h)
Q_{nR} = Calor transmitido calculado a partir del flujo de proceso después de un cierto
       tiempo de servicio del equipo (Btu/h)
Q_{m\acute{a}x} = Calor máximo transmitido (^{Btu}/_{h})
Q_p = Calor transmitido calculado a partir del flujo de proceso en un tiempo inicial (^{Btu}/_h)
Q_{\lambda} = Calor latente de evaporización del agua (^{Btu}/_{b})
R_1 = Resistencia a la tansferencia de calor por lado tubo \binom{h^*pie^{2*\circ}F}{Rm}
R_2 = Resistencia a la tansferencia de las incrustaciones por lado tubo \binom{h^*pie^{2*o}F}{Btu}
```

 R_3 = Resistencia a la tansferencia de calor por el material del tubo $\binom{h^*pie^2*^oF}{Btu}$

 R_5 = Resistencia a la tansferencia de calor por las inscrustaciones externas tubo ($^{h^*pie^2*\circ F}/_{Btu}$)

 R_4 = Resistencia a la tansferencia de calor por lado carcasa $\binom{h^*pie^2*\circ F}{Btu}$

 m_{sq} = Flujo másico del agua líquida a la salida del equipo de intercambio ($\frac{lb}{h}$)

R = Ganancia de temperatura del fluido que va por el exterior de los tubos (adimensional)

 r_C = Resistencia al ensuciamiento lado carcasa ($^{h*pie^2*\circ F}/_{Btu}$)

Re = Número de Reynolds (adimensional)

 R_{di} = Factor interno de obstrucción ($^{h*pie^2*\circ F}/_{Btu}$)

 R_{do} = Factor externo de obstrucción ($^{h^*pie^2*\circ F}/_{Btu}$)

 R_d = Factor combinado de obstrucción $\binom{h^*pie^2*\circ F}{Btu}$

 R_{dR} = Factor combinado de obstrucción calculada a partir de datos de operación tomadas del equipo de intercambio $\binom{h^*pie^2*oF}{Btu}$

 r_T = Resistencia al ensuciamiento lado tubo ($^{h*pie^2*oF}/_{Btu}$)

S =Parámetro que identifica al tipo de empaque usado en las torres de enfriamiento (adimensional).

 T_1 = Temperatura de entrada del agua a la torre de enfriamiento (°F)

 T_2 = Temperatura de salida del agua a la torre de enfriamiento (°F)

 T_a = Temperatura promedio del agua (°F)

 T_{air} = Temperatura promedio del aire (°F)

 T_{ea} = Temperatura del agua que entra al equipo térmico (°F)

 T_{eair} = Temperatura del aire a la entrada de la torre (°F)

 T_{ep} = Temperatura promedio entre la temperatura de entrada y salida de los fluidos del sistema de intercambio térmico (°F)

 T_{ma} = Temperatura media del agua (°F)

 T_{mp} = Temperatura media del fluido de procesos (°F)

 T_{sa} = Temperatura de salida del agua del equipo térmico (°F)

 T_{sair} = Temperatura del aire a la salida de la torre (°F)

 T_{sp} = Temperatura del fluido de procesos a la salida del equipo térmico (°F)

 T_{SPC} = Temperatura calculada de los fluidos del proceso a la salida del equipo térmico (°F)

 T_{SPR} = Temperatura real de los fluidos del proceso a la salida del equipo térmico (°F)

 T_{sop} = Temperatura supuesta del fluido de proceso a la salida del equipo térmico (°F)

 T_p = Temperatura de pared externa del tubo (°F)

 U_D = Coeficiente global de transferencia de calor de diseño (${}^{Btu}/_{h^*pie^2*^\circ F}$)

 U_{C} = Coeficiente global de transferencia de calor limpio $\binom{Btu}{h^*pie^2*\circ F}$

 U_R = Coeficiente global de transferencia de calor determinado después de cierto tiempo de servicio $\binom{Btu}{h^*pie^{2*\circ}F}$

 $V = Velocidad (\frac{pie}{s})$

 V_1 = Velocidad promedio determinada en el punto inicial ($\frac{pie}{s}$)

 V_2 = Velocidad promedio determinada en el punto final ($\frac{pie}{s}$)

 V^* = Volumen de la Torre de enfriamiento ($_{pie^3}$)

x =Espesor (in)

X = Factor que agrupa razones de temperatura (adimensional)

Y' = Raz'on de humidificaci'on (lb vapor de agua/ lb de aire seco)

Z = Altura (pie)

LISTA DE SÍMBOLOS GRIEGOS

 α = Factor de corrección de la energía cinética (adimensional)

 α_1 = Factor de corrección de la energía cinética en el punto inicial (adimensional)

 α_2 = Factor de corrección de la energía cinética en el punto final (adimensional)

 $\Delta H_{1,2,3,4}$ = Variaciones de entalpía usados en el método de Tchebyshev ($^{Btu}/_{h}$)

 ΔP = Caída de presión (psia)

 ΔP_C = Caída de presión lado carcasa (psia)

 ΔP_{ES} = Caída de presión generadas por la entrada y salida (psia)

 ΔP_R = Caída de presión por pérdidas de momentum (psia)

 ΔP_T = Caída de presión lado tubo (psia)

 ΔP_{TC} = Caída de presión total lado carcasa (psia)

 ΔP_{TT} = Caída de presión Total lado tubo (psia)

 $\Delta T = \text{Variación de temperatura (°F)}$

 ΔTB = Diferencia balanceada de temperatura (°F)

ΔTML = Diferencia de temperatura media logarítmica (°F)

 ΔTML_R = Diferencia de temperatura media logarítmica real (°F)

 $\mathcal{E}/D = \text{Rugosidad relativa (adimensional)}$

 μ = Viscosidad del fluido a temperatura media (cP)

 $\mu_{\rm C}$ = Viscosidad promedio del fluido que pasa por lado carcasa (cP)

 μ_T = Viscosidad promedio del fluido que pasa por lado tubo (cP)

 μ_{WeT} = Viscosidad a la temperatura de la pared externa del tubo (cP)

 $\mu_{\it WiT} = {
m Viscosidad}$ a la temperatura de la pared interna del tubo (cP)

 $\rho = Densidad \left(\frac{lb}{pie^3} \right)$

 ρ_T = Densidad lado tubo a la temperatura media ($\frac{lb}{nie^3}$)

 $\rho_{\rm C}$ = Densidad lado carcasa a la temperatura media ($\frac{lb}{p_{\rm pie^3}}$)

ABREVIATURA DE EQUIPOS E INSTRUMENTOS

- AC-1 = Acumulador de gasolina.
- B-7/7A =Bombas de gasolina.
- B-12 = Bomba de agua de enfriamiento hacia el condensador IC-11.
- B-17/17A = Bomba de condensado de tope de la torre de vacío.
- FI = Contador de flujo de válvulas de control
- IC 1A/1B = Aeroenfriadores de gas de tope de la torre atmosférica.
- IC 2A/2B = Condensadores de gas de tope de la torre atmosférica.
- IC-3/4 = Enfriadores de nafta.
- IC-5/6 = Enfriadores de diesel liviano.
- IC-10/10A = Enfriador de destilado liviano.
- IC-11/12 = Condensadores de tope de la torre de vacío.
- IC-15 = Enfriador de residuo de vacío y gasoil.
- IP-7/7A = Enfriadores de nafta de planta de parafina.
- J-2 = Inyector de vacío de condensadores de vapores de la torre de vacío.
- PI = Instrumento indicador de presión.
- TI = Instrumento indicado de temperatura.
- T-1 = Torre de enfriamiento.

CAPÍTULO I INTRODUCCIÓN

1.1 PLANTAMIENTO DEL PROBLEMA

Entre todos los centros de refinación del país, la Refinería San Roque es la única planta productora de parafinas; en ella se procesan crudos parafinosos livianos provenientes de las áreas de producción del distrito Anaco, tales como: Santa Rosa I, Santa Ana III, San Joaquín I / IV, El Toco y Tácata.

La producción de parafinas involucra una serie de procesos que van desde la destilación atmosférica y de vacío hasta una adsorción, que tiene como finalidad eliminar las impurezas que estos alcanos arrastran de las etapas aguas arriba.

Estos procesos, a su vez, involucran sistemas de enfriamiento con agua que son usados para garantizar condiciones óptimas en las etapas aguas abajo. Dichos sistemas han presentado una desviación de temperatura fuera del rango de operación causando diversos problemas, entre ellos se encuentra la poca condensación de los vapores de tope de la columna atmosférica que genera una quema excesiva en el mechurrio.

Para resolver estos inconvenientes, los supervisores de la planta proponen la evaluación de la torre de enfriamiento y de todos los intercambiadores de calor que usan agua como medio de enfriamiento, con el fin de determinar las posibles causas que generan estos problemas y así poder tomar las acciones correspondientes en la próxima parada de planta a realizarse en Marzo de 2009.

1.2 OBJETIVOS

General:

Evaluar los sistemas de enfriamiento de la Refinería San Roque.

Específicos:

- 1 Caracterizar los diferentes fluidos que son enfriados por estos sistemas térmicos.
- 2 Caracterizar a través de ensayos ASTM D86 y D1160 los crudos que entran a la columna atmosférica.
- 3 Simular en PROII la planta de crudo y vacío de la Refinería San Roque.
- 4 Validar los resultados de la simulación usando los datos de planta disponibles, así como los resultados de la caracterización de los crudos.
- 5 Determinar el Rendimiento de la Torre de enfriamiento TE-1.
- 6 Determinar el rendimiento de los intercambiadores que usan agua como fluido de enfriamiento.
- Automatizar los cálculos típicos de ingeniería, usados para la evaluación de estos intercambiadores, para facilitar el procedimiento de inspección de estos sistemas.

1.3 ANTECEDENTES

Actualmente existen equipos en la refinería donde el monitoreo de la eficiencia es una rutina necesaria para saber el comportamiento de éstos a través del tiempo, así se toman las decisiones cuando la eficiencia de los equipos salga fuera de los rangos permitidos en los manuales de operación. Sin embargo, no todos los equipos cuentan con un procedimiento que les permita el cálculo de la eficiencia; entre estos equipos se encuentran los intercambiadores de calor.

Salazar (2003) da el primer paso en estudiar la necesidad de tener un manual donde se reporten las condiciones de seguridad de los equipos de la planta de crudo y vacío,

entre ellos se encuentran los equipos de enfriamiento, indicando en su informe las condiciones de operación, tanto máximas como mínimas de las variables medibles, tales como: temperatura, presión y flujo. Actualmente los resultados determinados por Salazar son usados por los operadores como rutina diaria en las tablas de reporte de estos equipos.

Por otra parte, el personal de la sala técnica y del Departamento de Inspección ha desarrollado a lo largo de los años una serie de historiales sobre cada parada que se ha hecho y cómo se han ido modificando los intercambiadores. También se han reportado las causas generadoras de sus bajas eficiencia cuando el equipo está desarmado para su mantenimiento.

Adicionalmente, dicho departamento cuenta con los planos de los detalles mecánicos que los fabricantes de los intercambiadores de calor entregan a la hora de ser comprados. Con la ayuda de los planos se ha podido especificar la construcción de piezas necesarias para el reemplazo en los equipos.

Toda la información antes mencionada, es de vital importancia al momento de generar procedimientos que ayuden a los supervisores de la refinería a determinar el comportamiento de los equipos de enfriamiento con respecto a variables que ellos puedan medir con facilidad, y que a futuro sean la base para nuevos manuales de operación de los mismos.

CAPÍTULO II. REVISIÓN BIBLIOGRÁFICA

En este capítulo se establecen los fundamentos teóricos necesarios para poder lograr la ejecución de los objetivos específicos establecidos en este Trabajo Especial de Grado.

2.1 INTERCAMBIADORES DE CALOR.

La transferencia de calor puede definirse como la transmisión de energía de una región a otra como resultado de una diferencia de temperatura notable entre éstas. Así un aparato cuya finalidad es la transferencia de energía entre dos fluidos, es llamado intercambiador de calor. Estos equipos son necesariamente útiles para recuperar el exceso de energía que de otra manera se perdería, reduciendo así los costos totales en combustibles o servicios de una planta de proceso (PDVSA, MDP-05-E-01,1997).

En general, un intercambiador de calor es cualquier equipo en el cual se transfiere calor de un fluido caliente a un fluido más frío, a través de una pared que separa los dos fluidos. El calor fluye como resultado del gradiente de temperatura, es decir, que la fuente de energía proviene del intercambio entre los fluidos a través de una convección forzada del fluido más caliente que incorpora calor por conducción y por convección que transmite la pared hacia el fluido menos caliente. Adicionalmente, en estos equipos puede ocurrir transferencia de calor hacia los alrededores (disipación de calor al medio ambiente) por convección natural, así como por radiación.

Los procesos de transferencia de calor a nivel industrial se clasifican en: transferencias de calor con cambio de fase (vaporización y condensación) y transferencia de calor sin cambio de fase (donde sólo ocurre calentamiento y enfriamiento de fluidos). Una mejor descripción del funcionamiento de los procesos industriales es la siguiente:

- Recuperación de calor: la corriente fría recupera parte del calor de la corriente caliente, es decir, el calentamiento y enfriamiento de las corrientes involucradas, las cuales fluyen simultáneamente a ambos lados del área de transferencia de calor.
- Evaporación: una de las corrientes involucradas en el intercambiador cambia de fase de líquido a vapor. Por lo general, son los fluidos más fríos que son calentados por el otro fluido aumentando su calor latente.
- Condensación: Una de las corrientes involucradas en el intercambiador de calor cambia de fase vapor a fase líquida. En estos casos el fluido más caliente es enfriado por el fluido más frío generando que su calor latente disminuya.

Existe una gama de tipos de intercambiadores de calor, esto es con el fin de satisfacer una condición de operación que requiera un proceso en la industria química. Dichos intercambiadores de calor son clasificados según su forma, mecanismos de transferencia de calor, geometría y tipo de construcción. Las formas y los tamaños dependerán de la cantidad de energía que estos equipos requieran retirar o intercambiar entre los fluidos.

Entre los tipos de intercambiadores de calor que la refinería San Roque posee en sus procesos se encuentran: los intercambiadores de doble tubo, tubo y carcasa y enfriador por aire de tiro inducido.

La mayoría de los intercambiadores están ubicados en la planta de crudo, y su función es tratar de disminuir la carga calórica de los diferentes cortes obtenidos de la torre atmosférica y de vacío, para que éstos puedan ser almacenados a una temperatura conveniente.

2.1.1 INTERCAMBIADORES DE DOBLE TUBO.

Los intercambiadores de calor de doble tubo consisten en un tubo dentro de una carcasa de tubo. Las unidades casi siempre consisten de dos tubos rectos conectados en un extremo en forma de "U" o de "horquilla". A este montaje se le llama sección de doble tubo. A pesar de que algunas secciones de doble tubo tienen tubos sencillos, algunos de estos equipos tienen aletas longitudinales en el exterior del tubo interno (PDVSA, MDP-05-E-04,1995). En la figura N° 2.1 se pueden apreciar los diferentes tipos de aletas, que el tubo interno de estos intercambiadores posee.

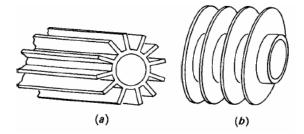


Figura N° 2.1 Tipos de aletas: (a) aleta longitudinal, (b) alerta transversal (McCabe,1991)

El objetivo principal de las aletas longitudinales es mejorar o aumentar el área de transferencia de calor. Tienen dos efectos principales:

- Reducir el área de transferencia del flujo en el lado anular o de la carcasa, lo
 cual resulta en un cambio en el diámetro hidráulico del ánulo y la aleta e
 incremento de la velocidad del fluido.
- Incremento tanto del área de transferencia como de la caída de presión (PDVSA, MDP-05-E-04,1995).

La principal desventaja en el uso de los intercambiadores de doble tubo es la pequeña superficie de transferencia de calor contenida en una horquilla simple. Aunque su

desventaja sea su área de transferencia de calor, son muy útiles cuando se requiera superficies de intercambio de 100 hasta 200 pies².

Generalmente se ensamblan en longitudes efectivas de 12 a 20 pies, siendo ésta la distancia entre cada rama de la horquilla donde ocurre la transferencia de calor, sin incluir la prolongación en "U" del tubo interno (Kern, 1999).

2.1.2 INTERCAMBIADORES DE TUBO Y CARCASA.

El intercambiador de tubo y carcasa consiste de un haz de tubos paralelos encerrados en un tubo cilíndrico denominado carcasa. Estos aparatos se diseñan, fabrican y clasifican de acuerdo a los estándares de la asociación de fabricantes de intercambiadores tubulares (TEMA, 1999).

Éste es el tipo de intercambiador que se utiliza comúnmente en las refinerías. No es caro, es fácil de limpiar y relativamente fácil de construir en diferentes tamaños; además, puede ser diseñado para presiones desde moderadas a altas, sin que varíe sustancialmente el costo. Es mecánicamente resistente para soportar las tensiones a las cuales es sometido durante la etapa de fabricación, el envío, montaje e instalación en sitio; y los esfuerzos externos e internos en las condiciones normales de operación, debido a los cambios en temperatura y presión (PDVSA, MDP-05-E-01,1995).

Los tipos existentes de intercambiadores de tubo y carcasa, ordenados según su incremento de costos, para rangos de presiones desde moderadas a altas, son los siguientes:

- Intercambiador de cabezal fijo.
- Intercambiador con tubos en U.
- Intercambiador de cabezal fijo con junta de expansión o junta de empaques.
- Intercambiador de cabezal flotante.

La mayoría de los intercambiadores de tubo y carcasa se montan en posición horizontal, si el fluido es líquido. Cuando dicho fluido entra por la parte inferior del intercambiador, ya sea por el lado carcasa o del lado tubo, y sale por la parte superior, provoca que el equipo esté siempre lleno del líquido, generando así el uso de toda el área de los tubos para su respectivo intercambio térmico. De no ser así, se forman nubes o "bolsas" de vapor, como se muestra en la figura Nº 2.2, causando pérdida de eficiencia en la transferencia en los tubos que se encuentran atrapados en esa nube de vapores.

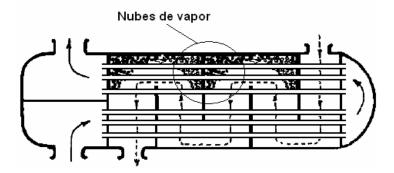


Figura Nº 2.2 Nubes de vapor en el interior de la carcasa (Elaboración propia).

2.1.3 VARIACIONES EN LA PRESIÓN.

La caída de presión en un intercambiador es producto de tres tipos de pérdidas: las pérdidas por fricción debidas al flujo, las pérdidas debidas a cambios en la dirección del flujo y las pérdidas causadas por la expansión y contracción en las entradas y salidas de las boquillas y tubos. El método para calcular la caída de presión es diferente para cada tipo de intercambiador. No es deseable tener altas caídas de presión, ya que éstas contribuyen a la erosión, requiriendo el uso de internos de espesor excesivo y de válvulas, accesorios o tuberías de una clasificación mayor en el circuito del intercambiador (PDVSA, MDP-05-E-01,1995).

En la tabla 2.1 se muestran las variaciones típicas de las presiones de operación para los diferentes tipos de intercambiadores de calor; la tabla 2.2 muestra las ecuaciones usadas para calcular la caída de presión de cada lado del intercambiador.

TABLA 2.1 Caídas de presión típicas para intercambiares de calor de Tubo y Carcasa, Doble Tubo y Enfriadores por Aire (PDVSA, MDP-05-E-01,1995).

FLUIDO	ΔP (psi)
Gases y vapores (alta presión)	5-10
Gases y vapores (baja presión)	2-5
Gases y vapores (presión atmosférica)	0.5-2
Vapores (vacío)	< 0.5
Vapores (Condensadores de Torre de vació)	0.06-0.23
Líquido	10-25

TABLA 2.2 Ecuaciones para calcular las caídas de presión (Kern, 1999).

INTERCAMBIADORES DE TUBO Y CARCASA			
LADO CARCASA		LADO TUBO	
$\Delta P_C = \frac{f \times G_C^2 \times D_C \times (N+1)}{2 \times g \times \rho_C \times D_e \times \left(\frac{\mu_C}{\mu_{WiC}}\right)^{0.14} \times 144}$	(2.1)	$\Delta P_T = \frac{f \times G_T^2 \times N_P \times L}{2 \times g \times \rho_T \times D_e \times \left(\frac{\mu_T}{\mu_{WiT}}\right)^{0.14} \times 144}$	(2.7)
$f = 1.756 \times \text{Re}^{-0.192}$	(2.2)	$f = 0.411 \times \text{Re}_{eq}^{-0.252}$	(2.8)
para Re > 300		$f = 0.411 \times \text{Re}_{eq}^{-0.252}$ $\text{para Re}_{eq} > 1000$	
$(N+1) = \frac{L}{B}$	(2.3)	$\Delta P_R = \frac{4 \times N_P \times \rho_T \times V^2}{2 \times g \times 144} \text{ por paso}$ $\Delta P_R = \Delta P_R + \Delta P_R \qquad (2.10)$	(2.9)
		$\Delta P_{TT} = \Delta P_T + \Delta P_R \tag{2.10}$	
INTERCAME	BIADO	R DE DOBLE TUBO	
$\Delta P_C = \frac{4 \times f \times G_C^2 \times L}{2 \times g \times \rho_C^2 \times D_e'}$	(2.4)	$\Delta P_T = \frac{4 \times f \times G_T^2 \times L}{2 \times g \times \rho_T^2 \times D_{iT}} \times \left(\frac{\rho_T}{144}\right)$	(2.11)
$\Delta P_{ES} = \frac{N \times V^2 \times 1,296 \times 10^7}{2 \times g}$	(2.5)	$\Delta P_T = \frac{4 \times f \times G_T^2 \times L}{2 \times g \times \rho_T^2 \times D_{iT}} \times \left(\frac{\rho_T}{144}\right)$ $f = 0.0035 + \frac{0.264}{\left(\frac{D_{iT}G_T}{\mu_T}\right)^{0.42}}$	(2.12)
$\Delta P_{TC} = (\Delta P_{ES} + \Delta P_C) * (\frac{\rho_C}{144}) $ (2.6)			

2.1.4 DIFERENCIA DE TEMPERATURA MEDIA LOGARÍTMICA (ΔΤΜL)

La diferencia de temperatura en cada punto del intercambiador de calor constituye la fuerza impulsora mediante la cual se transfiere el calor desde la fuente al receptor. Dicha fuerza no permanece constante a lo largo del equipo debido al cambio de energía entre los fluidos.

Como es muy complicado medir los promedios de temperatura en cada punto a lo largo del equipo, se toman únicamente las temperaturas de entrada y salida de los fluidos caliente y frío, respectivamente. Mediante un balance diferencial de energía en un punto del intercambiador en los fluidos caliente y frío, con una posterior integración para la longitud total del equipo, se llega a expresiones que pueden representar los ΔTML , ya sea para fluidos que se desplacen en paralelo y en contracorriente.

Dichas expresiones se determinan partiendo de las siguientes suposiciones:

- El intercambiador está aislado de sus alrededores.
- El coeficiente global de transferencia de calor es constante en toda su trayectoria.
- Los calores específicos de los fluidos son constantes.
- Los cambios de energía potencial y cinética son despreciables.
- La conducción axial a lo largo de los tubos es insignificante.
- La cantidad de flujo que pasa por el equipo se mantiene constante (estado estacionario).
- No hay cambios parciales de fase en el sistema.

En la figura N° 2.3 se muestran los perfiles de temperatura para cada caso de desplazamiento de los fluidos.

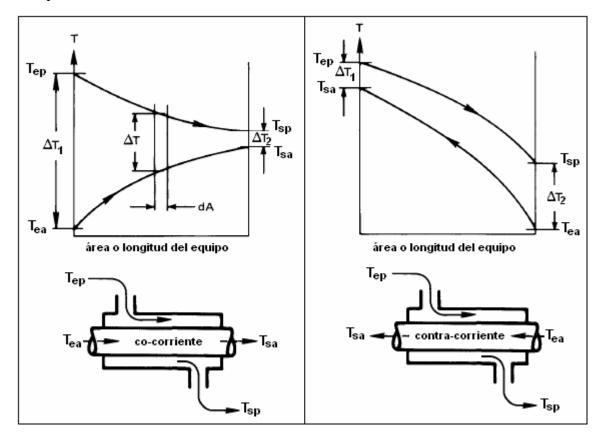


Figura N° 2.3 Representación de los perfiles de temperatura para flujos en paralelo y en contracorriente (Elaboración propia).

Las ecuaciones que representan la diferencia de temperatura media logarítmica son las siguientes:

Flujo paralelo:
$$\Delta TML = \frac{(T_{ep} - T_{ea}) - (T_{sp} - T_{sa})}{\ln \left(\frac{T_{ep} - T_{ea}}{T_{sp} - T_{sa}}\right)}$$
(2.13)

Flujo contracorriente
$$\Delta TML = \frac{(T_{ep} - T_{sa}) - (T_{sp} - T_{ea})}{\ln\left(\frac{T_{ep} - T_{sa}}{T_{sp} - T_{ea}}\right)}$$
 (2.14)

Aun cuando dos fluidos pueden transferir calor en un aparato de intercambio de calor, ya sea en contracorriente o en flujo paralelo, la dirección de los dos fluidos influye en el valor de la diferencia de temperatura. En general, el ΔTML de contracorriente es mucho mayor que el de flujo paralelo, trayendo consigo un área superficial de transferencia de calor más pequeña para el arreglo en contraflujo que para el arreglo en paralelo, siempre y cuando permanezca constante el coeficiente global de transferencia de calor.

Por otra parte, cuando existe condensación de compuestos puros, la temperatura de cambio de fase permanece constante en toda su trayectoria. En cambio, para condensaciones de mezclas de vapores, la diferencia media logarítmica de temperatura (ΔTML) se llamará diferencia balanceada de temperatura (ΔTB), y se determina a partir de la diferencia de temperatura promediada entre la curva de condensación de la mezcla de vapores (temperatura en función del contenido de calor) y la línea recta que representa el medio de enfriamiento. En la figura N° 2.4 se presentan estas dos tendencias de condensación.

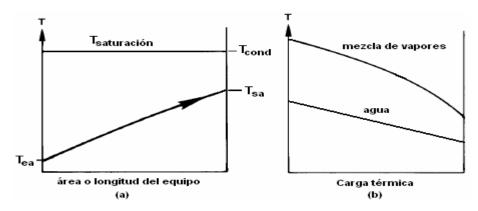


Figura N° 2.4 Representación de los perfiles de temperatura en condensación: (a) condensación isotérmica de un compuesto puro, (b) curva de condensación de una mezcla de compuestos (Elaboración propia).

Cuando los intercambiadores poseen más de dos pasos por la carcasa ocurre una combinación de flujo paralelo y contracorriente. Por ende, la diferencia de temperatura media logarítmica debe corregirse mediante un factor que depende del número de pasos por la carcasa. Existe una correlación obtenida de la modificación de la derivación de Underwood y se presenta en la forma final por Naple y Bowman, Mueller y Nagle (Kern, 1999).

$$F = \frac{\sqrt{R^2 + 1} \times \ln\left(\frac{1 - X}{1 - RX}\right)}{(R - 1) \times \ln\left(\frac{2 - X \times (R + 1 - \sqrt{R^2 + 1})}{2 - X \times (R + 1 + \sqrt{R^2 + 1})}\right)}$$
(2.15)

Donde
$$X = \frac{1 - \left(\frac{1 - RP^*}{1 - P^*}\right)^{1/N_p}}{R - \left(\frac{1 - RP^*}{1 - P^*}\right)^{1/N_p}}$$
 (2.16)

$$R = \frac{T_{ep} - T_{sp}}{T_{sa} - T_{ea}} \tag{2.17}$$

 $P^* = \frac{T_{sa} - T_{ea}}{T_{ep} - T_{ea}} \tag{2.18}$

Donde el parámetro R es el cociente de los productos de calor específico por flujo másico de cada uno de los fluidos y P^* es una eficiencia térmica que representa el cociente de la diferencia de temperatura del fluido que va por los tubos (proporcional a la energía intercambiada en forma de calor) y la diferencia de temperatura de entrada (fuerza impulsora para el intercambiador de calor).

2.1.5 FACTORES DE ENSUCIAMIENTO.

Cuando los aparatos de transferencia de calor han estado en servicio por algún tiempo se depositan incrustaciones en la parte interior y exterior del tubo, como resultado de las interacciones entre los fluidos y el material usado para la elaboración del equipo. Estas incrustaciones añaden resistencias adicionales en el coeficiente global de transferencia de calor, generando una disminución gradual de la eficiencia del equipo, debido a que las temperaturas de salida requeridas en los fluidos del intercambiador, no serán alcanzadas por la resistencia que estos depósitos generan. En la figura 2.5 se pueden observar las resistencias que se generan en el tubo interno de los intercambiadores.

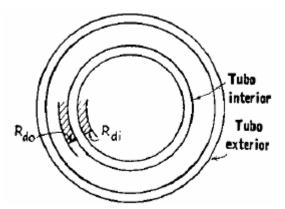


Figura 2.5 Localización de los factores de obstrucción en un intercambiador (Kern, 1999).

Cuando se determina el valor del coeficiente global a partir de la resistencia de las paredes de los tubos, coeficientes de película internos y externos es llamado coeficiente total limpio (Uc), mientras que al incluir las resistencias de ensuciamiento (tabuladas), su nombre cambiará a coeficiente total de diseño (U_D), término que proporcionará las bases en las cuales el equipo debe ser fabricado.

Los factores de ensuciamiento tabulados pretenden evitar que el intercambiador transfiera menos calor que el requerido por el proceso, durante un período

aproximado de un año a un año y medio. Sin embargo, los datos tabulados son solamente una guía, ya que cuando exista información que pueda ser utilizada para determinar con precisión el factor de ensuciamiento para un servicio en particular, se deben usar éstos en lugar de los reportados en tablas (PDVSA, MDP-05-E-01,1995).

Como el coeficiente global de diseño y las temperaturas de salida cambian a medida que se acumulen las incrustaciones, se puede determinar un criterio que indique cuando sacar de servicio un equipo de intercambio para su limpieza. Si ΔTML se calcula a partir de las temperaturas observadas en lugar de las temperaturas de proceso, U_D se llamará U_R que representa el coeficiente real que posee el equipo después de cierto tiempo de servicio, entonces:

$$\frac{1}{U_R} = \frac{1}{U_C} + R_{di} + R_{do} \tag{2.19}$$

Cambiando
$$R_{di} + R_{do} = R_d$$
 (2.20)

Entonces
$$R_d = \frac{U_C - U_R}{U_C \times U_R}$$
 (2.21)

La ecuación anterior puede ser usada para determinar R_d para un período de tiempo dado.

Cuando R_d (depositado) > R_d (permitido), como ocurre después de un período de servicio, el equipo no transferirá una cantidad de calor igual a los requerimientos de proceso y debe limpiarse (Kern, 1999).

Otra expresión usada para generar tendencias del factor de incrustación con respecto al tiempo es

$$\frac{1}{U_R(t)} = \frac{1}{U_C} + R_d(t) \tag{2.22}$$

La ecuación 2.22 es usada para determinar el tiempo en el que un intercambiador debe ser sacado fuera de servicio para su limpieza.

2.1.6 DIFERENCIA ENTRE EVALUACIÓN Y DISEÑO DE LOS INTERCAMBIADORES DE CALOR.

La diferencia radica en que los diseños de intercambiadores de calor son procesos intrínsicamente de ensayo y error, debido a que se debe ir proponiendo una configuración del equipo térmico, de manera que satisfaga la comparación entre la caída de presión, el calor y el área de transferencia de calor calculada con la requerida por el proceso. Si el arreglo propuesto no satisface los requerimientos del proceso, se debe elegir otra configuración hasta que estos arreglos se aproximen a los parámetros de comparación. Mientras que en las evaluaciones se comparan datos recalculados de las variables de salida con los datos de diseño y operación, sabiendo de antemano la configuración real del intercambiador estudiado.

Tanto para el diseño como para la evaluación se debe partir de datos bases que representan la información necesaria para iniciar los cálculos de cada caso. En la tabla Nº 2.3 se presenta un resumen de los datos bases del diseño y evaluación.

TABLA Nº 2.3 Datos base para el diseño y evaluación de intercambiadores de calor (Elaboración Propia).

DATOS BASE: DISEÑO	DATOS BASE: EVALUACIÓN
m_p , m_a , T_{ep} , T_{sp} , T_{ea} , T_{sa} , propiedades termofísicas de los fluidos, factor de ensuciamiento de cada fluido y ΔP permitido	m_p , m_a , T_{ep} , T_{ea} , Propiedades
	termofísicas de los fluidos, factor de ensuciamiento de cada fluido, ΔP ,
	disposición de los fluidos Lado carcasa: D_C , número de pasos, espaciamiento entre deflectores.
	Lado tubo: número de tubos, longitud, diámetro externo, espesor del tubo, tipo de arreglo y número de pasos.

Aunque los datos base de cada caso son diferentes, las ecuaciones usadas para el diseño y evaluación son las mismas. Sin embargo, los procedimientos de cálculo son muy distintos en cada caso. A continuación se presentan en la figura N° 2.6 los diagramas de bloques del cálculo general, donde se denota la diferencia entre evaluación y diseño de los equipos térmicos.

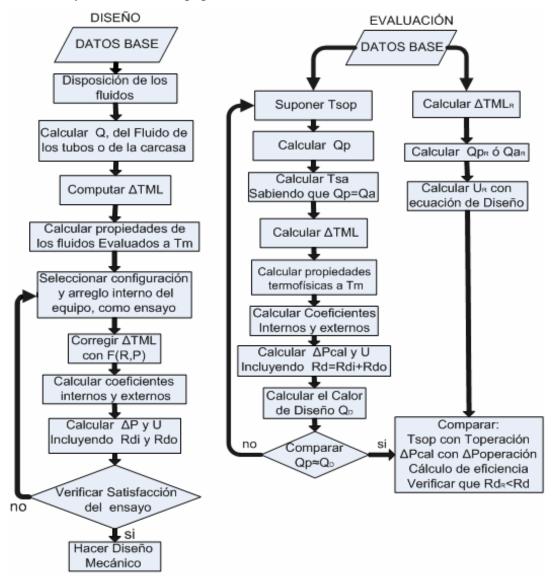


Figura Nº 2.6 Diagrama de procedimiento general para el diseño y evaluación de intercambiadores de calor (Elaboración propia).

2.2 TORRES DE ENFRIAMIENTO.

En los procesos industriales se producen excesos de calor, usualmente en la forma de agua caliente que puede ser enfriada y volverla a utilizar. Las torres de enfriamiento disipan esta cantidad de calor rápidamente, por la circulación de las aguas calientes de los procesos en presencia de aire para maximizar la evaporación (Hensley, 1992).

Los procesos de enfriamiento del agua a partir de la humidificación del aire, llevan consigo un proceso de difusión, que consiste en la transferencia de material entre una fase y otra o entre las dos fases provocada por una diferencia de presión o concentración entre dichas fases. Esta conducta se llama Transferencia de Masa o material para diferenciarla de los conceptos de transferencia de calor (Kern, 1999).

La humidificación del aire en las torres de enfriamiento ocurre por la saturación de éste con vapor de agua, que sale con el aire llevando consigo su calor latente de vaporización. Esto es debido a que el calor latente del agua es tan grande que una cantidad pequeña de evaporación produce grandes efectos de enfriamiento (Treybal, 1988).

Este tipo de torres poseen empaque que tienen como función el aumento de la superficie de transferencia, ya sea distribuyendo líquido sobre una gran superficie o retardando la caída de las gotas a través de este equipo. Debido a los requerimientos de grandes volúmenes de aire y pequeñas caídas de presión permitidas, es costumbre usar largueras de madera de sección rectangular o triangular, que dejan la torre sustancialmente sin obstruir el paso de los fluidos. En la figura Nº 2.7 se muestra la forma de estos tipos de empaque.

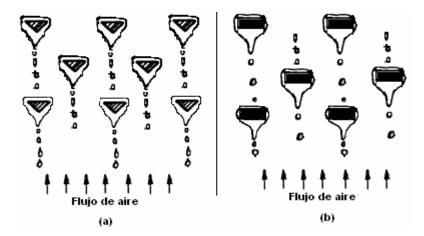


Figura N° 2.7 Tipos comunes de empaques en torres de enfriamiento: (a) empaque triangular, (b) empaque rectangular (Elaboración propia)

En los cálculos involucrados en el diseño y evaluación de las torres de enfriamiento, se encuentra una variable conocida como temperatura de bulbo húmedo; dicha temperatura es muy importante, debido a que se puede sacar una descripción de la transferencia simultánea de masa y calor. La temperatura de bulbo húmedo se define como la temperatura más baja a la que el agua puede obtenerse por humidificación adiabática (Kern, 1999).

Una ecuación usada para la evaluación y el diseño de torres de enfriamiento, es deducida a partir de la combinación y rearreglo de las ecuaciones del balance de masa y energía en un pequeño diferencial de la altura de la torre, como se muestra en la figura N° 2.8.

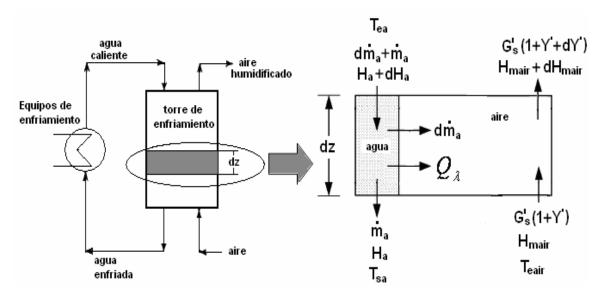


Figura Nº 2.8 Sección diferencial de una torre de enfriamiento (Elaboración propia).

Al realizar un balance de calor y masa seguida de unas suposiciones, se tiene que:

$$Z = \frac{G_S^{\prime}}{k^{\prime} \times a} \times \int_{H_2}^{H_1} \frac{dH_{mair}}{H_S - H_{mair}}$$
(2.23)

Donde
$$\frac{G_s'}{k' \times a} = HTU$$
 (2.24)

$$y \int_{H_2}^{H_1} \frac{dH}{H_S - H_{mair}} = NTU'$$
 (2.25)

En la industria, *NTU* es conocido como el número de Merkel y también como la demanda de la torre. Con frecuencia, las industrias dedicadas a la elaboración de torres de enfriamiento representan la ecuación 2.25 como una función de las temperaturas de entrada y salida del agua que circula por la torre:

$$NUT = \frac{k' \times a \times V^*}{m_a} = \int_{T_1}^{T_2} \frac{C_{pa}dT}{H_S - H_{mair}}$$
(2.26)

Una representación gráfica de NTU en función de L'/G'_s es conocida como la curva de demanda o de requerimiento de diseño y representa una medida del grado de dificultad para alcanzar las condiciones de diseño de enfriamiento del liquido, sin depender en lo absoluto de las características físicas de la torre.

La solución de la ecuación 2.26, es determinada a partir de un método estandarizado por el Instituto de Torres de Enfriamiento (CTI) en el año 1967, llamado método de integración numérico de Tchebyshev, que consiste en la evaluación de la ecuación por cuatro temperaturas en el intervalo de operación o requerido para el enfriamiento, es decir:

$$NUT = \int_{T_1}^{T_2} \frac{C_{pa}dT}{H_S - H_{mair}} = C_{pa} \times \frac{(T_2 - T_1)}{4} \times \sum_{j=1}^{4} \frac{1}{\Delta H_j}$$
 (2.27)

Donde

$$\Delta H_1 = H_S - H_{mair}$$
, evaluado a la temperatura $T_1 + 0.1 \times (T_2 - T_1)$ (2.28)

$$\Delta H_2 = H_S - H_{mair}$$
, evaluado a la temperatura $T_1 + 0.4 \times (T_2 - T_1)$ (2.29)

$$\Delta H_3 = H_S - H_{mair}$$
, evaluado a la temperatura $T_1 + 0.6 \times (T_2 - T_1)$ (2.30)

$$\Delta H_4 = H_S - H_{mair}$$
, evaluado a la temperatura $T_1 + 0.9 \times (T_2 - T_1)$ (2.31)

Debido a que este término es muy importante para la industria son generadas muchas correlaciones para diferentes torres y disposiciones de los empaques. Estas correlaciones son también una relación de NTU en función de m_a/G_S^{\prime} y su representación gráfica es conocida como Curva Característica, la cual da una medida de la capacidad de enfriamiento de una torre en particular.

$$NTU = C \times \left(\frac{L'}{G_s'}\right)^s \tag{2.32}$$

Donde C y S son las constantes que caracterizan el tipo y disposición de los empaques.

En la figura N° 2.9 se aprecian las curvas de NTU en función de L'/G'_s :

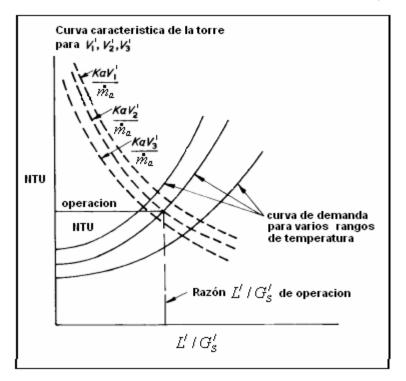


Figura N° 2.9 Representación gráfica de la curva característica y la curva de demanda de una torre de enfriamiento (Elaboración propia).

2.2.1 EFICIENCIA DE TORRES DE ENFRIAMIENTO.

Para definir la eficiencia de un equipo donde se intercambie calor, se debe determinar primero la transferencia de calor máxima posible, $Q_{m\acute{a}x}$, para dicho sistema térmico. Antes de determinar una expresión para la eficiencia, se debe definir la capacitancia térmica del flujo de agua y de aire como:

$$C_a = Cp_a \times m_a \tag{2.33}$$

$$C_{qir} = Cp_{qir} \times G_{s} \tag{2.34}$$

El calor máximo posible se determina a partir de la menor capacitancia que se pueda obtener de los dos fluidos que están íntimamente en contacto, entonces

$$Q_{m\acute{a}x} = C_{m\acute{n}} \times (T_{ep} - T_{ea}) \tag{2.35}$$

Obteniéndose como eficiencia que
$$e = \frac{Q_{actual}}{Q_{máx}}$$
 (2.36)

La expresión anterior es muy usada para determinar la eficiencia de un intercambiador de calor, con la única diferencia de que el calor máximo estaría representado por el calor usado para el diseño del equipo.

Para determinar la eficiencia de una torre de enfriamiento Jaber & Webb (1989), desarrollaron una ecuación necesaria para aplicar el método de e-NTU para torres de enfriamiento en contra flujo y flujo transversal. Kröger (2004) manejó los detalles de las expresiones desarrolladas por Jaber & Webb e implementó la eficiencia a los sistemas aire y agua, llegando a la ecuación 2.37 (Kloppers y Kröger, 2005).

$$e_T = \frac{C_a \times (T_2 - T_1)}{C_{min} \times (H_{eS} - f_2 - H_1)}$$
 (2.37)

Donde f_{λ} es un factor de corrección, otorgado por Berman en 1961 con el fin de mejorar las aproximaciones de la entalpía de saturación del aire en función de la temperatura del agua como una línea recta. El factor de corrección es calculado a partir de la ecuación:

$$f_{\lambda} = \frac{(H_{sS} + H_{eS} - 2 \times H_{Sm})}{4} \tag{2.38}$$

2.3 ECUACIÓN GENERAL DEL TEOREMA DE BERNOULLI

El teorema de Bernoulli representa la aplicación de la ley de la conservación de la energía al flujo de fluidos en una tubería. Expresa que la energía total en un punto cualquiera, por encima de un plano horizontal arbitrario fijado como referencia, es igual a la suma de la altura geométrica, la altura debida a la presión y la altura debida a la velocidad, es decir:

$$Z + \frac{P}{\rho g} + \frac{V^2}{2g} = H \tag{2.39}$$

Si las pérdidas por rozamiento se desprecian y no se aporta o se toma ninguna energía del sistema de tuberías, tales como bombas y turbinas, entonces la altura total H en la ecuación anterior permanecerá constante para cualquier punto del fluido. Sin embargo, en la realidad existen pérdidas o incrementos de energía que deben incluirse en la ecuación de Bernoulli.

La ecuación de Bernoulli debe corregirse para fluidos no compresibles; en este caso se debe registrar que las pérdidas por rozamiento en las tuberías para un fluido que circula desde un punto a hasta un punto $b\left(Hf\right)$ se expresan en pérdidas de altura del líquido circulante. La ecuación puede escribirse de la siguiente manera:

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2 \times g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2 \times g} + Z_2 + Hf$$
 (2.40)

Adicionalmente, se deben introducir factores de corrección a la energía cinética

$$\frac{P_1}{\rho g} + \frac{\alpha_1 \times V_1^2}{2 \times g} + Z_1 = \frac{P_2}{\rho g} + \frac{\alpha_2 \times V_2^2}{2 \times g} + Z_2 + Hf$$
 (2.41)

La fricción se produce en las capas límite, debido a que el trabajo realizado por las fuerzas de cizalla para mantener los gradientes de velocidad, tanto en el flujo laminar como en el turbulento, se convierte finalmente en calor por acción viscosa (McCabe, 1991).

El flujo de fluido en tuberías está siempre acompañado de rozamiento de las partículas del fluido entre sí y, consecuentemente, por las pérdidas de energía disponibles; esto quiere decir que tiene que existir una pérdida de presión en el sentido del flujo. La ecuación general de las pérdidas de presión, conocida como ecuación de Darcy es:

$$Hf = f_d \times \left(\frac{L}{D_{iT}}\right) \times \frac{V^2}{2 \times g} \tag{2.42}$$

Esta ecuación se aplica a tuberías de diámetro constante a través de una tubería recta, ya sea vertical, horizontal o inclinada. Además, esta ecuación puede ser usada para el flujo laminar, transitorio y turbulento desarrollado, pero el factor de Darcy (f_d) debe ser evaluado correctamente de acuerdo al régimen del flujo expresado en la tabla Nº 2.4.

Tabla 2.4 Variación del Factor de Fricción de Darcy con respecto al Régimen de Flujo (Elaboración propia).

Régimen Laminar Re≤2100	Régimen de Turbulencia Re ≥ 4000	Régimen Turbulento Desarrollado Re >>> 4000	
$f_d = \frac{64}{\text{Re}} \tag{2.43}$	$f_d = F(\frac{\mathcal{E}}{D}, \text{Re})$	$f_d = F(\frac{\mathcal{E}}{D})$	
$\alpha = 2$ (Corrección Cinética)	$\alpha = 1$	$\alpha = 1$	

El Factor de Darcy puede ser representado por la ecuación de Colebruck – Wens.

$$\frac{1}{\sqrt{f_d}} = -2 \times Log_{10} \left[\frac{\varepsilon/D}{3.71} + \frac{2.51}{\text{Rex}\sqrt{f_d}} \right]$$
 (2.44)

La cual requiere de un pequeño ciclo iterativo que consiste en ir suponiendo factores de Darcy hasta que se cumpla la igualdad de la ecuación 2.44.

Para evitar la iteración existen otras correlaciones que expresan muy bien este factor, cuando el flujo es turbulento (PDVSA, MDP-02-FF-03,1997). Un ejemplo es el de la ecuación:

$$f_d = 4 \times \left[-3.6 \times Log_{10} \left(\frac{6.9}{\text{Re}} \right) + \left(\frac{\varepsilon/D}{3.7} \right)^{1.1} \right]^{-2}$$
 (2.45)

Cuando se está evaluando la ecuación de Bernoulli generalizada en un tramo de tubería que posee muchos accesorios, sus pérdidas deben sumarse a la pérdida por fricción total. Se debe tomar en cuenta que el factor de fricción de Darcy debe ser evaluado en los accesorios como turbulencia desarrollada.

$$Hf = \frac{V^{2}}{2 \times g} \left(f_{d} \times \left(\frac{L}{D} \right)_{TUBERIA} + \sum_{d} f_{dTD} \times \left(\frac{L}{D} \right)_{ACCESORIOS} + K_{entrada-Salida} \right) (2.46)$$

El coeficiente de resistencia a la entrada y salida ($K_{\it Entrada-Salida}$) se considera independiente del factor de fricción y del número de Reynolds, los cuales pueden tratarse como constantes para cualquier obstáculo dado en un sistema de tuberías bajo cualquier condición de flujo.

En este sentido
$$Hf = f_{dTD} \times \left(\frac{L}{D}\right) \times \frac{V^2}{2 \times g} = K \times \frac{V^2}{2 \times g}$$
 (2.47)

es decir que
$$K$$
 es equivalente a $f_{dTD} \times \left(\frac{L}{D}\right)$ (2.48)

Cuando se incluyen sistemas de bombeo, en el balance de energía se debe incluir el cabezal suministrado por la bomba centrífuga en altura de líquido (H_B).

$$\frac{P_1}{\rho \times g} + Z_1 + \frac{V_1^2}{2 \times g} + H_B = \frac{P_2}{\rho \times g} + Z_2 + \frac{V_2^2}{2 \times g} + Hf$$
 (2.49)

Cuando se despeja este cabezal y se evalúa a diferentes caudales en el tramo desde la succión hasta la descarga de una bomba (o donde se puedan medir con facilidad las variaciones de presión de la bomba), se podrá determinar por medio de una tendencia la curva de operación del sistema.

Una bomba no tiene un único punto de funcionamiento sino una infinidad de ellos. La curva que une todos los puntos de funcionamiento posibles de una bomba acoplados a un motor concreto recibe el nombre de curva característica o curva de la bomba, siendo los fabricantes los que suministran la información (Mott, 1997).

Si la tendencia de la curva de operación es dibujada sobre las curvas características que provee el fabricante, se puede obtener a partir de las intersecciones de las curvas del fabricante y la curva dibujada, la gama de puntos de operación a las cuales estaría operando la bomba para un sistema particular. En la figura Nº 2.10 se muestra la gama de puntos de operación a la que estaría trabajando la bomba.

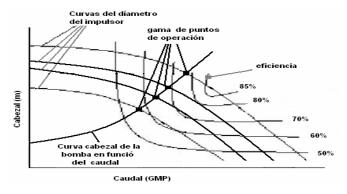


Figura N° 2.10 Ubicación de la gama de puntos de operación en el diagrama del fabricante de una bomba (Elaboración propia).

CAPÍTULO III METODOLOGÍA EXPERIMENTAL

Para cumplir los objetivos específicos se llevarán a cabo la serie de pasos y procedimientos que se describen a continuación:

3.1 CARACTERIZACIÓN DE LOS DIFERENTES FLUIDOS QUE SON ENFRIADOS EN LOS DISTINTOS EQUIPOS TÉRMICOS.

Se recolectó toda la información sobre los diferentes procesos que se llevan a cabo en la refinería. Para ello se contó con el apoyo, comentarios y explicaciones de los supervisores de las áreas; además, se tuvo acceso a los manuales de operación de cada una de las plantas que conforman la refinería. Por otro lado, se llevaron a cabo recorridos diarios por las diferentes áreas para confirmar la información y determinar los cambios, tanto de equipos como de alineaciones de tuberías, que se hayan generado en cada parada de planta.

Después de haber armado un bosquejo de los procesos y ubicado cada uno de los equipos que posee la refinería, se realizó un diagrama de flujo de procesos (DFP), con la finalidad de conocer la conexión que hay entre los diferentes procesos de la refinería San Roque. A partir del DFP, se identificaron los fluidos enfriados por los sistemas térmicos en estudio.

3.2 CARACTERIZACIÓN A TRAVÉS DE ENSAYOS ASTM D86 Y ASTM 1160 DE LOS CRUDOS QUE ENTRAN A LA COLUMNA ATMOSFÉRICA.

La evaluación de los intercambiadores necesita como datos las propiedades termofísicas de los fluidos que son enfriados por estos sistemas térmicos, tales como: la viscosidad, capacidad calorífica, densidad y conductividad térmica. Dichas propiedades no se encuentran reportadas en la literatura ni en los datos de análisis que

se le realizan a estos fluidos diariamente en el laboratorio de la refinería, debido a que éstos están formados por una mezcla compleja de compuestos. Para ello se simuló en el programa PRO II la destilación atmosférica y la de vacío, a las corrientes de los diferentes cortes que se obtuvieron de la simulación se les generó un reporte químico que incluye todas las propiedades necesarias para la evaluación en función de la temperatura.

Para iniciar la simulación se necesitan como datos de entrada al programa los ensayos ASTM D86 y ASTM 1160 del crudo que se alimenta a la torre atmosférica.

3.2.1 PROCEDIMIENTO PARA REALIZAR EL ENSAYO ASTM D86

Los ensayos ASTM D86 y 1160 fueron realizados en las instalaciones del laboratorio de la refinería San Roque bajo la supervisión de los diferentes analistas de turno. El equipo usado para la destilación atmosférica es llamado HEMPEL (método manual) y su procedimiento de analisis sigue la norma COVENIN 423-76. Su procedimiento de uso es el siguiente:

- 1. Tomar una muestra de crudo de los tanques de almacenamiento.
- 2. Pesar un balón de destilación de 500 mL con 10 perlas de vidrio (bolas de vidrio menores de 2 mm de diámetro) y una malla de fraccionamiento.
- 3. Retirar la malla, añadir 300 mL del crudo a destilar y colocar la malla nuevamente en el balón.
- 4. Acondicionar con hielo la cava de condensación del equipo hasta lograr un rango de temperaturas entre 0 y 4 °C.
- 5. Conectar el balón de destilación a la cava del condensador e introducir un termómetro, de forma tal que su bulbo se mantenga al mismo nivel de la pared interior de su conexión de salida.
- 6. Conectar la resistencia eléctrica a la fuente de electricidad.

- 7. Encender el regulador de voltaje accionando el interruptor de encendido ON/OFF. Ajustar el voltaje a 60 V girando la perilla del regulador, de forma tal de ajustar el calor para que el tiempo entre su primera aplicación y el punto inicial de ebullición esté entre 5 y 10 minutos.
- 8. Cubrir un rango de destilación general de temperaturas comprendidas entre 122 y 527°F. Durante este proceso se deben medir los volúmenes de destilado en los siguientes cortes:
 - 122, 167 y 212°F: Corresponde a la gasolina de tope de la torre atmosférica.
 - 302, 347, 392°F: Corresponde a la nafta.
 - 329 y 482°F Corresponde a diesel liviano.
 - 482 y 527°F correspondientes a diesel mediano.
- 9. Contabilizar la cantidad de destilado que aún sigue saliendo del balón cuando la temperatura esté en 527°F y la resistencia esté apagada.
- 10. Pesar el residuo de fondo cuando haya terminado de destilar la muestra de crudo dentro del balón a las temperaturas indicadas anteriormente.
- La figura N° 3.1 muestra el montaje completo de la destilación manual HEMPEL

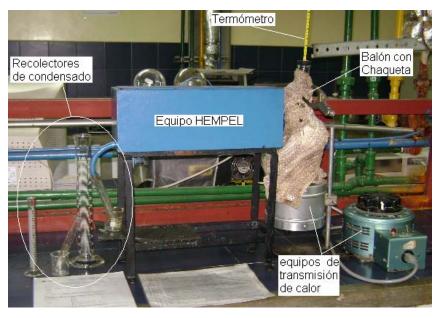


Figura Nº 3.1. Equipo de destilación atmosférica ASTM D86 (Elaboración propia).

3.2.2 PROCEDIMIENTO PARA REALIZAR EL ENSAYO ASTM 1160.

En la figura N° 3.2, se muestra el montaje completo de la destilación a presiones reducidas; su procedimiento esta dado por la norma COVENIN 2370-86 y es el siguiente:

- 1. Pesar el matraz de destilación al vacío sin muestra.
- Transvasar 100 mL del residuo que queda en el balón de la destilación ASTM D86 hacia el matraz de destilación al vacío.
- 3. Colocar un pequeño tapón de lana de vidrio dentro del receptáculo para el termómetro del matraz de destilación; insertar el termómetro al termopar.
- Lubricar las uniones del equipo de destilación con la grasa apropiada, en cantidades mínimas. Limpiar las superficies de las uniones antes de aplicar la grasa.
- 5. Colocar el matraz sobre el calentador y conectar las uniones del equipo, sujetándolas con pinzas ajustables.
- 6. Poner en funcionamiento la bomba de vacío y observar el contenido del matraz para detectar una posible formación de espumas; en cuyo caso, se debe dejar que aumente ligeramente la presión del equipo, hasta lograr eliminar la espuma.
- 7. Hacer vacío en el equipo, hasta que la presión alcance el nivel deseado para la destilación, entre 1 y 2 mmHg.
- 8. Iniciar la destilación y anotar las temperaturas y presiones de vacío observadas en la primera gota y en los volúmenes de 5, 10, 20% y punto final, suprimiendo el calentamiento a los 640 °F, corregido a la presión atmosférica.
- 9. Desalojar el destilado recuperado a los 640°F, instalar un nuevo cilindro y continuar el calentamiento.

Nota: para poder desalojar la muestra destilada, se debe bajar el calentamiento y esperar que el matraz se enfríe unos minutos con una corriente de aire suave hasta que no se observen vapores de hidrocarburos, ya que si se presuriza el sistema con aire mientras éste contiene vapores de hidrocarburos se podría producir una explosión.

- 10. Anotar las temperaturas y presiones de vacío observadas en la primera gota y en los volúmenes de 5, 20, 30, 40, 50% y punto final, suprimiendo el calentamiento a los 900°F.
- 11. Corregir todas las temperaturas para cada porcentaje a la presión de una atmósfera.

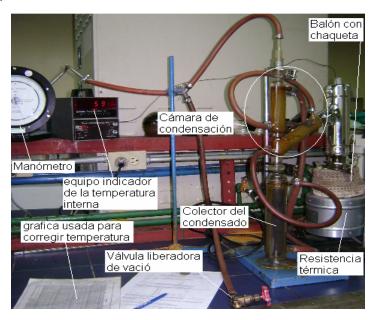


Figura Nº 3.2. Montaje usado para el análisis ASTM 1160 (Elaboración propia).

3.3 DETERMINACIÓN DE LAS DIMENSIONES DE LOS EQUIPOS DE INTERCAMBIO DE CALOR.

Una vez conocido el número de equipos a evaluar térmicamente se visitó la sala técnica, con el fin de determinar los detalles de cada intercambiador, tales como: el número de tubos con su respectivo diámetro, longitud y material, el diámetro de la carcasa, su longitud y material, el número, porcentaje de corte y el espacio de separación entre los deflectores a lo largo del intercambiador y disposición de los tubos.

Adicionalmente, se investigaron los detalles de la torre atmosférica y de vacío, para su posterior uso en la simulación en PROII.

3.4 SIMULACIÓN EN PROII DE LA PLANTA DE CRUDO Y DE VACÍO DE LA REFINERÍA SAN ROQUE.

Para poder desarrollar este objetivo se contó con el DPF y los valores de las variables que la sala de control reportó, así como también de los detalles mecánicos de los diferentes equipos que conforman las plantas de crudo y vacío. Adicionalmente, se investigó sobre las teorías termodinámicas que son usadas para modelar el crudo que entra a las torres de destilación.

3.5 VALIDACIÓN DE LOS RESULTADOS DE LA SIMULACIÓN USANDO LOS DATOS DE PLANTA DISPONIBLES, ASI COMO LOS RESULTADOS DE LA CARACTERIZACIÓN DE LOS CRUDOS.

Para poder cumplir con este objetivo específico, se realizaron ensayos ASTM D86 y 1160 a los cortes obtenidos de la torre atmosférica y de vacío que están disponibles para obtener muestras en línea. En este caso se compararon los ASTM D86 de muestras obtenidas en planta de nafta, diesel liviano, destilado liviano y gasolina con los obtenidos en el simulador PRO II. El ASTM 1160 fue comparado con las muestras de Residuo de vacío y destilado liviano.

3.6 GENERACIÓN DE DT&I.

Debido a que la planta no posee diagramas de tuberías e instrumentación (DT&I) de las aguas que circulan por los diferentes procesos, se diseñó un procedimiento que contempla lo siguiente:

Tomando como punto de partida los equipos de enfriamiento que se realizaron en el DFP, se realizó un recorrido diario línea por línea para dibujar a mano alzada las trayectorias de estas tuberías de agua hacia los diferentes procesos, diferenciando entre las tuberías de agua de enfriamiento a los procesos, de las que transportan agua

caliente hacia la torre de enfriamiento. Se dibujó en el programa AUTOCAD versión 2006 el DT&I siguiendo las normas PDVSA número L-TP 1.1 para la realización de estos planos. (Ver anexo F)

3.7 EVALUACIÓN DE LA TORRE DE ENFRIAMIENTO.

Para la evaluación de la torre de enfriamiento se llevarón a cabo los siguientes pasos:

- 1) El flujo de aire que sale de la torre fue determinado a partir de un anemómetro, con el fin de determinar la velocidad del aire que sale de los ventiladores. Con dicha velocidad y el área de escape del aire, se determinó el flujo de aire que entra y sale del sistema.
- 2) A partir del flujo de agua que sale de los equipos de enfriamiento, se determinó la cantidad de agua que entra a la torre.
- 3) Se determinó con un termómetro de mercurio y una gasa humedecida la temperatura de bulbo húmedo y bulbo seco del tope y fondo del aire que entra al sistema. Adicionalmente, se determinó la temperatura del agua a la entrada y salida de la torre.

El método de evaluación consistió en calcular el número de unidad de transferencia para las condiciones determinadas en los pasos anteriores, para luego compararlas con las de diseño. Adicionalmente, se determinó la eficiencia de la misma con la ecuación 2.37.

3.8 EVALUACIÓN DE LOS INTERCAMBIADORES DE CALOR.

Para la evaluación de los intercambiadores de calor se especificarón las variables que se pueden medir en cada uno de los equipos, tales como: temperatura, presión y flujo. A continuación se da una breve explicación que expresa la forma en que las variables fueron obtenidas:

En la figura 3.3 se muestra que las temperaturas del fluido de proceso tienen instrumentos tanto en la entrada como a la salida, para la medición de la temperatura (termómetro) y presión (manómetro). En cuanto al flujo de agua, no se cuenta con una válvula libre a la entrada del equipo y a la salida sólo cuenta con una válvula (marcada con el número 1 en la figura), que fue usada para medir la temperatura con un termómetro de mercurio y la presión con un manómetro que fue facilitado por el departamento de servicios industriales.

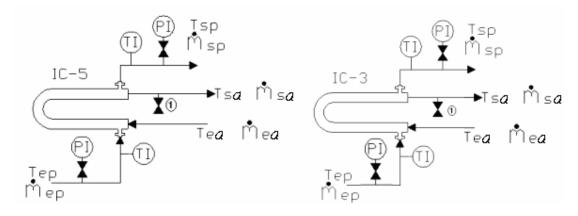


Figura N°3.3. Diagrama de los intercambiadores IC-3 y 5 (Elaboración propia).

Para obtener la presión y la temperatura a la entrada de los intercambiadores IC-3 y IC-5, se realizó un permiso de trabajo en frío, donde se instalaron válvulas libres a las entradas de agua de estos equipos. En la figura Nº 3.4, se muestra el cambio realizado a estos equipos de intercambio.

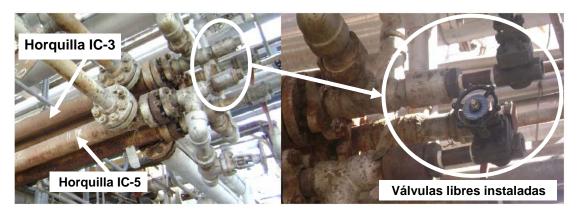


Figura N° 3.4. Modificación de la entrada de agua de los equipos IC-3 y 5 (Elaboración propia).

Los flujos de proceso de los intercambiadores IC-3 y 5, son reportados en los controles de flujo a la salida de los intercambiadores IC-4 y 6, respectivamente, ya que estos equipos operan en serie. En la figura N° 3.5, se muestran los diagramas de los intercambiadores IC-4 y IC-6.

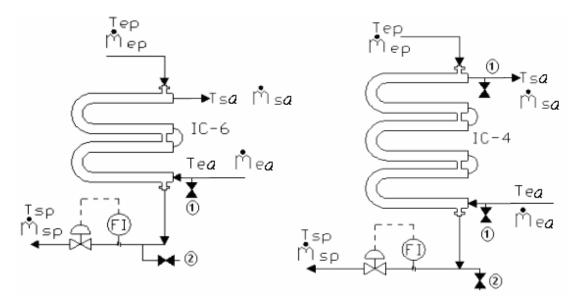


Figura N° 3.5. Diagrama de los intercambiadores IC-4 y 6 (Elaboración propia).

Las temperaturas del flujo de proceso a la entrada de los intercambiadores IC-4 y 6, son reportadas por los indicadores ubicados a la salida de los intercambiadores IC-3

y 5. Las temperaturas de salida fueron medidas con un termómetro de mercurio en las válvulas disponibles (indicadas en la figura Nº 3.5 con el número 2) contando con el apoyo de los operadores y con el equipo contra incendios, ya que estos fluidos son altamente inflamables.

A diferencia del IC-4, la temperatura de salida del agua de enfriamiento y la caída de presión no puede ser medida en el IC-6, ya que solo cuenta con una válvula disponible a la entrada; en este caso se realizó un trabajo en frío, con el fin de reemplazar un accesorio de la línea por otro que permitiera la medición de la presión a la salida (se reemplazó un codo de 90 por una T). En la figura Nº 3.6, se muestra el reemplazo realizado en el intercambiador IC-6.

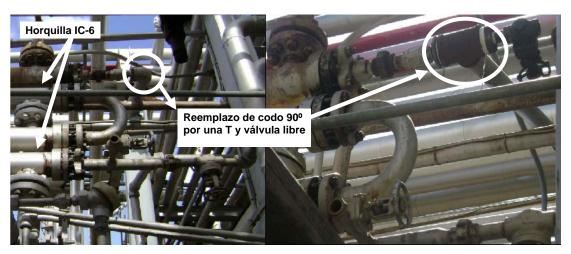


Figura N° 3.6. Modificación de accesorios a la línea de agua a la salida del intercambiador IC-6 (Elaboración propia).

En los enfriadores de nafta IP-7/7A mostrados en la figura N° 3.7, las temperaturas y presión de entrada y salida del agua de enfriamiento fueron fácilmente determinadas a partir de la válvula libre (indicadas en la figura N° 3.7 con el número 1). Al igual que el agua, la temperatura del fluido de proceso se determinó a partir de sus indicadores y el flujo se tomó de los indicadores ubicados a la salida de la línea de proceso del intercambiador. Para determinar la presión del fluido de proceso, se realizó un permiso en frío, donde solo se pudieron instalar válvulas libres (indicada en la figura N° 3.7 con el número 2) en la entrada y salida del equipo IP-7A, ya que el intercambiador IP-7 no cuenta con conexiones para instrumentos.

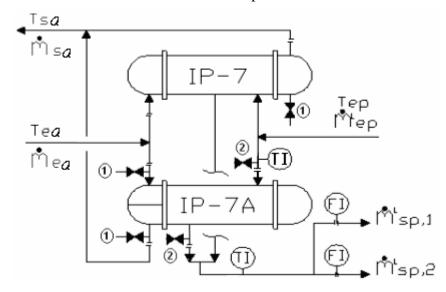


Figura Nº 3.7. Diagrama de los intercambiadores IP-7 y 7A (Elaboración propia).

En la figura N°3.8 se muestran los intercambiadores IC-2A/2B, donde las temperaturas del agua de enfriamiento siguen siendo fáciles de determinar. A diferencia del agua, el fluido de proceso representa en este caso el principal problema para la determinación de las variables, debido a que éste no posee indicador de temperatura a su entrada.

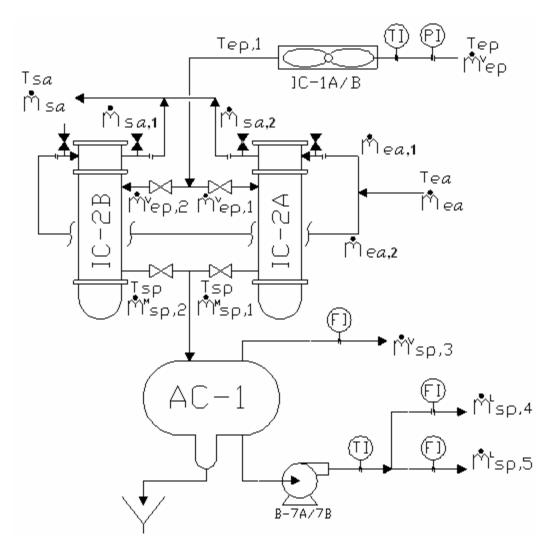


Figura N°3.8. Diagrama de los condensadores IC-2A/2B de los vapores de tope de la torre atmosférica (Elaboración propia).

En este caso la refinería cuenta con un departamento de inspección e ingeniería de instalaciones que dispone de un equipo láser para determinar temperaturas de superficies. Con la temperatura reportada por este equipo y conociendo la conductividad térmica del material de la tubería y su emisividad, se realizó un balance de calor en una sección transversal de la tubería. A partir de dicho balance se determinó la temperatura de entrada del IC-2A/2B. En la figura N° 3.9 se muestra el equipo usado para medir temperaturas de superficies.

Figura N°3.9. Equipo láser medidor de temperaturas de superficies (Elaboración Propia).

La temperatura de salida se obtuvo a partir de la lectura del indicador ubicado a la salida de la bomba B-7A/7B.

El flujo de proceso se determinó a partir de un balance de masa en el equipo AC-1, donde la suma de las salidas de dicho equipo corresponden a la cantidad total de flujo que circula por los condensadores.

En los condensadores de tope de la torre de vacío IC-11 y 12, las temperaturas de entrada y salida tanto de agua como del condensado del flujo de proceso, fueron fácilmente determinadas, tanto por sus indicadores como manualmente con un termómetro de mercurio, como se muestra en la figura N° 3.10 (en el desagüe de descarga de la bomba B-17/17A).

El flujo de agua se determinó a partir de un balance de energía, haciendo el uso del teorema de Bernoulli, incluyendo todas las pérdidas y determinando las presiones de entrada y salida de la bomba B-12, a partir de la instalación de un manómetro de Bourdon que fue facilitado por el departamento de instrumentación de la refinería San Roque.

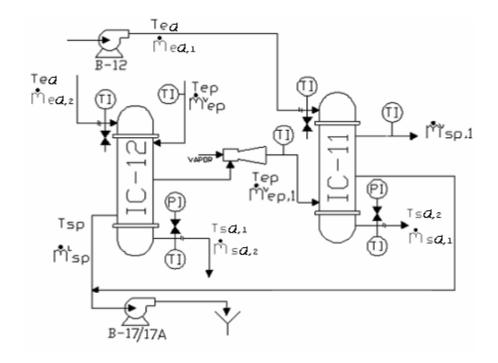


Figura N°3.10. Diagrama de los condensadores IC-11 y 12 de los vapores de tope de la torre de vacío (Elaboración propia).

El flujo másico del fluido de procesos que entra al intercambiador IC-12, se determinó a partir de un balance de masa en la torre de vacío (TV-1). Se sabe por datos de planta, que el equipo IC-12, condesa más del 90% de la carga entrante, el 10% restante es condensado por el intercambiador IC-11, incluyendo a este último el flujo de vapor que entra en el eyector J-2.

En los intercambiadores IC-10/10A la metodología de recopilación de los datos de las variables necesarias para su evaluación, es la misma usada en los intercambiadores anteriores.

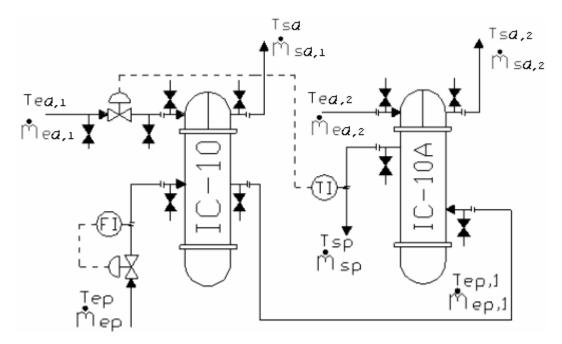


Figura Nº 3.11. Diagrama de intercambiadores IC-10/10A (Elaboración propia).

La forma en que se determinó el flujo másico en el intercambiador IC-10A, es a partir de un balance de energía de Bernoulli generalizado en un tramo de tubería donde se podía medir una variación de presión. Como se muestra en la figura N°3.11 la válvula de control a la entrada del IC-10 reporta porcentaje de abertura en la sala de control; como el porcentaje de abertura es directamente proporcional al caudal, se usa la expresión dada por los fabricantes de válvulas:

$$q = Cv \times \sqrt{\frac{\Delta P}{Gf}} \tag{3.1}$$

Siendo el térmico Cv una constante que depende del porcentaje de abertura de la válvula.

De igual forma se procedió para el cálculo del flujo másico del agua en el intercambiador IC-15 que se muestra en la figura N°3.12, tomando en cuenta que para la determinación de la presión, tanto en la entrada como en la salida de la válvula de control, debe instalarse un manómetro con la ayuda del personal de instrumentación, ya que estas válvulas deben ser manipuladas con cuidado.

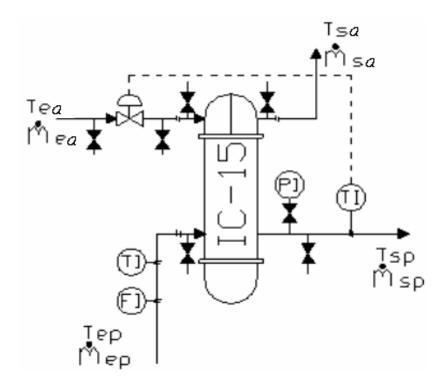


Figura Nº 3.12. Diagrama de intercambiador IC-15 (Elaboración propia).

Como la mayoría de los intercambiadores no poseen medidores de flujo en la corriente de agua de enfriamiento, se determinó dicho parámetro a partir de los conceptos de mecánica de fluidos mencionados.

Finalmente, se procedió con la evaluación de los diferentes intercambiadores usando el diagrama de bloques de la figura 2.6 y se compararon los resultados obtenidos con los reportados por el programa B-JAC.

B-JAC es un módulo de ASPEN muy usado para el diseño térmico, mecánico y evaluación de costos de intercambiadores de calor de tubo y carcaza. Dicho programa fue de mucha ayuda para la evaluación de los condensadores, debido a la complejidad y extensión de los cálculos implicados en su análisis evaluativo. Además, fue una herramienta importante a la hora de proponer un diseño nuevo de estos equipos. La única complicación es que este software no cuenta con hidrocarburos ni con la

opción de generación de pseudocomponentes de los fluidos de proceso. Sin embargo, a partir de los datos reportados por PROII, se puede usar el ASPEN PROPERTIES, se trabajó con la opción de usuarios de este programa, para compilar los resultados de las propiedades de los hidrocarburos como una nueva sustancia en el B-JAC.

3.9 BALANCE DE MASA DE LAS AGUAS

Uno de los objetivos específicos es determinar cuanta agua circula por las plantas de crudo, vacío y parafina. Para ello se tomaron todos los valores de flujo de agua calculados en los intercambiadores evaluados y además se calculó, a través del teorema de Bernoulli, la cantidad de agua de enfriamiento que sale de las piscinas de las torres de enfriamiento. Las aguas de reposición que entran a la torre de enfriamiento no poseen ningún instrumento que ayude a medir este flujo; por lo tanto, se usó un cronómetro y un envase con el fin de medir el tiempo que tarda el envase en llenarse y así determinar este flujo.

Existen otros equipos que usan agua como medio de enfriamiento, tal es el caso de los intercambiadores IP-13/13A y los enfriadores que usan los compresores de amoníaco de la planta de parafina, aunque estos intercambiadores no fueron evaluados debido a que no han presentado inconvenientes, se les calculó el calor retirado y con este último se determinó el flujo de agua que circula a través de ellos.

3.10 AUTOMATIZACIÓN DE LOS CÁLCULOS DE INGENIERÍA

Se realizaron hojas de cálculos para cada uno de los intercambiadores estudiados, siguiendo el procedimiento de cálculo mostrado en los anexos A y B tomando en cuenta el esquema presentado por la figura 2.6.

CAPÍTULO IV

RESULTADOS Y ANÁLISIS

En el capítulo anterior se describieron todos los pasos realizados para la evaluación de los intercambiadores de calor de las plantas de crudo y vacío incluyendo a la torre de enfriamiento. El presente capítulo tiene como objetivo, mostrar todos los resultados obtenidos de las diferentes evaluaciones y comparar dichos resultados con las variables reales de operación de estos equipos.

La evaluación de los intercambiadores fue establecida a un total de trece (13) equipos de enfriamiento con agua. En la tabla 4.1 se encuentran clasificados los diferentes equipos estudiados con la respectiva identificación de los fluidos de intercambio.

Tabla 4.1 Identificación de los intercambiadores de calor, que usan agua como fluido de enfriamiento.

Intercambiador	Tipo	Fluido de proceso
IC-2A	Tubo y carcasa	Vapor de tope TA-1
IC-2B	Tubo y carcasa	Vapor de tope TA-1
IC-3	Horquilla	Nafta
IC-4	Horquilla	Nafta
IC-5/6	Horquilla	Diesel liviano
IC-10	Tubo y carcasa	Destilado liviano
IC-10A	Tubo y carcasa	Destilado liviano
IC-11	Tubo y carcasa	Vapor de tope TV-1
IC-12	Tubo y carcasa	Vapor de tope TV-1
IC-15	Tubo y carcasa	Mezcla de Residuo de vacío- Gasoil
IP-7	Tubo y carcasa	Nafta
IP-7A	Tubo y carcasa	Nafta

4.1 RESULTADOS DE LA VALIDACIÓN DE LA SIMULACIÓN DE LA PLANTA DE CRUDO Y VACÍO.

La comprobación de la simulación consistió en comparar los ensayos ASTM que el simulador reporta con los hechos en el laboratorio.

4.1.1 DESTILADO LIVIANO

A continuación se presentan en la tabla 4.2, los resultados de los análisis ASTM D86 del destilado liviano.

Tabla 4.2 Resultados del ensayo ASTM D86 del laboratorio y el simulador del destilado liviano.

DESTILADO LIVIANO			
%Vol.	T(°F)- Pro II	T(°F)- laboratorio	% Desv.
PI	547,3	428	21,8
5	367,5	460	25,2
10	654,9	493	24,7
30	707,2	548	22,5
50	740,1	618	16,5
70	754,4	700	7,2
90	792,7	786	0,9
95	813,7	813	0,1
PF	837,2	844	0,8

Como puede observarse las desviaciones no sobrepasan el 25,5% y decrecen a medida que va aumentando la temperatura del destilado. Cabe destacar que las desviaciones comprendidas entre los puntos desde el 5 al 70%, es debida a la cantidad de livianos que la muestra poseía durante la destilación.

4.1.2 DIESEL LIVIANO

En la tabla 4.3 se muestran los resultados de los análisis ASTM D86 de una muestra de diesel liviano tomado a la salida del IC-6, en donde sus desviaciones se conservan por debajo del 15%, indicando así que la tendencia teórica se aproxima a la real.

Tabla 4.3 Resultados del ensayo ASTM D86 del laboratorio y el simulador del diesel liviano.

DIESEL LIVIANO			
%Vol.	T(°F)- Pro II	T(°F)- laboratorio	% Desv.
PI	337,3	369,9	9,6
5	379,1	433	14,2
10	394,9	447,3	13,5
30	408,7	466,7	14,2
50	416,0	475,3	14,5
70	425,9	483,4	13,5
90	446,9	496,6	11,1
95	464,4	504,7	8,7
PF	497,9	513,5	3,1

4.1.3 NAFTA

Al igual que en los análisis anteriores, se reportaron valores de destilación atmosférica ASTM D86 de la nafta que sale del intercambiador IC-4. Los resultados mostrados en la tabla 4.4 indican una desviación máxima del 58.9% en el punto inicial.

Una de las principales limitaciones para la comprobación de la simulación, fue la recolección de las muestras para el ensayo, ya que no todos los cortes que se obtiene de la torre atmosférica pueden ser tomados para dicho análisis, debido a que son pocas las válvulas con toma muestras existentes en la planta de crudo. Sin embargo, con los tres análisis realizados se demostró que la simulación de la torre atmosférica se aproxima en buena medida a la realidad.

Tabla 4.4 Resultados del ensayo ASTM D86 del laboratorio y el simulador de la Nafta (Elaboración propia).

	NAFTA				
%Vol.	T(°F)- Pro II	T(°F)- laboratorio	% Desv.		
PI	152,6	242,4	58,9		
5	274,2	265,5	3,2		
10	303,5	273,2	9,9		
30	327,7	295	10		
50	332,1	321,1	3,3		
70	348,5	335,5	3,8		
90	379,9	401,2	5,6		
95	395	418,6	5,9		
PF	419,4	431,2	2,8		

4.1.4 DESTILADO PESADO

Los diferentes cortes de destilados que se generan en la torre de vacío son caracterizados bajo la norma ASTM 1160. Los productos principales de dicha torre son: el destilado pesado, residuo de vacío y vapores de tope. A continuación se presenta la tabla 4.5 donde se reporta el ensayo realizado al destilado pesado.

Tabla 4.5 Resultados del ensayo ASTM 1160 del laboratorio y el simulador del destilado pesado.

DESTILADO PESADO				
%Vol.	T(°F)- Pro II	T(°F)- laboratorio	% Desv.	
PI	637,6	480	24,7	
5	664,7	513	22,8	
10	678,3	551	18,8	
30	729,7	633	13,3	
50	758,3	716	5,6	
70	779,5	760	2,5	
90	815,4	804	1,4	
95	830,1	831	0,1	
PF	846,7	853	0,7	

Al igual que en las discusiones anteriores, sus desviaciones presentan valores máximos de 24.7 %, causada por la presencia de compuestos más livianos en la muestra analizada. Sin embargo, a medida que la temperatura aumenta su desviación decrece de manera tal que el comportamiento generado por el simulador tiende a ser parecido al real.

4.1.5 RESIDUO DE VACÍO

En la última muestra analizada, se realizó el ensayo hasta una temperatura de máxima de 900°F, debido a que la resistencia térmica del equipo de vidrio usado para la destilación no está fabricada para altas temperaturas. En la tabla 4.6, se muestra la destilación del residuo de vacío, con un máximo de destilado de 50%, para evitar sobrepasar la temperatura permitida.

Tabla 4.6 Resultados del ensayo ASTM 1160 del laboratorio y el simulador del Residuo de vacío.

	RESIDUO DE VACÍO				
% Vol.	T(°F)- Pro II	T(°F)- laboratorio	% Desv.		
PI	774,4	341,7	55,9		
5	797,0	588,2	26,2		
10	805,9	628,9	22,0		
30	845,3	667,8	21,0		
50	883,9	847,3	4,1		

Durante el análisis de esta muestra ocurrieron variaciones contínuas en la presión de operación debido a fallas presentadas en el sistema que genera el vacío. Sin embargo, las desviaciones generadas por cada porcentaje de destilado fueron decreciendo a medida que el porcentaje de destilado aumentaba.

4.2 RESULTADOS DE LA EVALUACIÓN DE LA TORRE DE ENFRIAMIENTO.

Para la evaluación de la torre de enfriamiento se debe tener como dato base el caudal, tanto de agua como del aire que circula por el equipo así como tambien las temperaturas de entrada y salida de agua y la temperatura de bulbo húmedo. La cantidad de agua que entra a la torre se obtuvo de la suma de todas las aguas que salen de los equipos de intercambio. En la tabla 4.7 se muestra la cantidad de agua que pasa por los intercambiadores de calor de las diferentes plantas.

Tabla 4.7 Caudales de agua de los intercambiadores.

INTERCAMBIADORES	PLANTA	CAUDAL (GPM)
IC-2A	CRUDO	291.687
IC-2B	CRUDO	291.687
IC-3	CRUDO	63.407
IC-4	CRUDO	53.630
IC-5	CRUDO	63.407
IC-6	CRUDO	49.018
IC-10	CRUDO	143.900
IC-10A	CRUDO	329.126
IC-11	VACÍO	426.69
IC-12	VACÍO	3494.76
IC-15	CRUDO	70
IP-7	VACÍO	690.526
IP-7A	VACÍO	222.369
IP-13/13A	PARAFINA	18.16
IJ-P1/2, II-P1/2, EA-3P1/2, EA-2P1/2, EA-1P1/2	UR-2/PARAFINA	3637.758

Los valores reportados en la Tabla 4.7, son el resultado de un balance de energía de Bernoulli entre dos puntos de una línea de agua, que tiene válvulas libres que permiten medir caídas de presión. Cabe destacar que estos resultados son teóricos, ya que las únicas pérdidas incluidas en el balance son el factor de rozamiento que generan las tuberías y los accesorios y no incluye pérdidas por obstrucción ni depósitos de sólidos en la línea. Para poder resolver este inconveniente, se determinó la diferencia que existe entre el valor teórico del caudal de agua con el real, resultando ser este último un 15% por debajo del valor teórico.

Para poder determinar el NTUy realizar la evaluación se necesitan los datos con los que fueron diseñadas las torres de enfriamiento; en la tabla 4.8 se reportan las condiciones de diseño y actuales de la torre de enfriamiento.

Tabla 4.8 especificaciones de diseño de la torre de enfriamiento T-1

PARÀMETRO	VALOR DE DISEÑO	VALOR ACTUAL
Tasa de circulación (GPM)	6000	8369,2
Temperatura del agua caliente (°F)	115	100
Temperatura de agua fría (°F)	86	88
Temperatura de bulbo húmedo (°F)	80	79
Relación L'/G'		0,01
Número de unidad de transferencia (NTU)	2.467	0.876

Es de notarse que el flujo de agua que circula por las diferentes plantas de la refinería excede la capacidad de diseño de la torre. Sin embargo, la diferencia de temperatura para los valores actuales es menor a la de diseño, indicando que el potencial que debe vencer la torre es menor al cual fue diseñada.

Aunque este último sea una ventaja, se observa que la temperatura de salida real de la torre es superior en dos unidades a la temperatura de diseño, enviándose, agua a las diferentes plantas con una pequeña desviación.

Como ya se mencionó en el capítulo anterior, la evaluación consistió en determinar la relación de caudales que satisfaga el NUT y la temperatura de salida de diseño. En la tabla 4.9 se muestran los resultados de la evaluación de la torre de enfriamiento, reportando la relación L/G calculada y la eficiencia.

Tabla 4.9 Resultado de la evaluación de la torre de enfriamiento T-1

L'/G' de Diseño	L'/G' Actual		L'/G' Calculado
	0,01		1,36
Eficiencia e _T %			
Calculada a partir de la		Calculada a partir de la	
Ecuación 2.37		expresión (Q _{ACTUAL} /Q _{DISEÑO)}	
0,89%			67,7 %

Como puede observarse el valor de la relación de flujo necesaria para llegar a la temperatura de salida de diseño de salida, debe ser mayor a uno (1), indicando que el flujo de agua debe aumentarse o disminuir el flujo de aire. Era de esperase que el resultado fuera mayor a la unidad, debido que la torre presenta acanalamiento en su celda más pequeña evitando la transferencia de calor y masa en toda su área. En la figura 4.1 se puede apreciar el efecto de acanalamiento de la torre de enfriamiento.

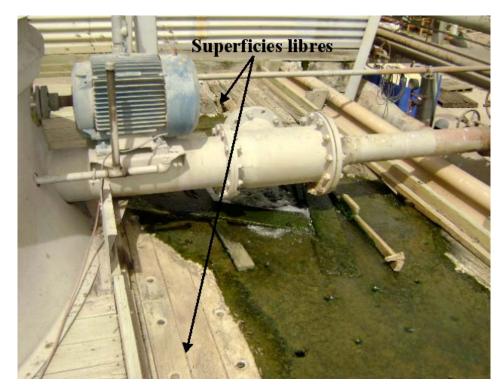


Figura 4.1 Zonas de acanalamiento en el área de distribución de agua de la torre de enfriamiento (Elaboración propia).

En cuanto a la eficiencia de la torre, el valor arrojado por el uso de la ecuación 2.37, indica una eficiencia menor al 1%, indicando que la expresión no se ajusta al proceso de transferencia de la torre de enfriamiento.

La eficiencia determinada por la expresión tradicional de transferencia de calor (Ec. 2.36) genera un valor de 67,7%, siendo este último más aceptable al comportamiento de la torre.

La eficiencia generada en este caso es relativamente baja, esto es debido al acanalamiento que hay en la celda que provoca una disminución en la fuerza impulsora requerida por el proceso.

4.3 RESULTADOS DE LA EVALUACIÓN DE INTERCAMBIADORES TIPO HORQUILLA.

Los resultados obtenidos en la evaluación de los equipos de intercambio tipo horquilla son presentados en la tabla 4.10.

Tabla 4.10 Resultados de la Evaluación de los intercambiadores tipo Horquilla

Intercambiador	Disposición de los fluidos	T _{SPC} (°F)	T _{SPR} (°F)	ΔP _R (psi)	ΔP _C (psi)	R _{dR} <r<sub>d</r<sub>	% e
IC-3	<u>Carcasa:</u> Nafta	147	280	5	3.14	No	22.2%
10-3	Tubo: Agua	95	97	10	5.9	cumple	
IC-4	<u>Carcasa:</u> Nafta	85.3	132		3.37	No	77%
10-4	<u>Tubo:</u> Agua	96.5	108	27	4	cumple	7770
IC-5	Carcasa: Diesel Liv.	182.8	260	5	3.1	No cumple	72.4%
10-3	Tubo: Agua	101.1	97	10	5.9		72.470
IC-6	Carcasa: Diesel Liv.	103.42	120		3.7	No cumple	73.7%
	Tubo: Agua	93.3	105	24	5.98		13.170

Una de las principales limitaciones presentada en la recolección de las variables medibles, fue la obtención de la caída de presión del lado del fluido de proceso de los intercambiadores IC-4 y IC-6, debido a que la línea que transporta este fluido no cuenta con válvula libre a la entrada del equipo.

La diferencia de temperatura entre la calculada y la real del fluido de proceso es muy significativa en los primeros tres intercambiadores de calor mostrados en la tabla 4.10. Esto es debido al factor de ensuciamiento, que sobrepasa al requerido y genera resistencia a la transferencia de calor entre los fluidos.

Aunque la diferencia de temperatura sea muy grande, la eficiencia de los intercambiadores son mayores del 70% en los tres últimos intercambiadores de calor, indicando un buen comportamiento del equipo. Sin embargo, la carga del fluido de proceso a la cual fueron diseñados estos equipos es menor al flujo de operación, causando que el calor de operación transferido tienda a acercarse al de diseño y genere buenos valores en la eficiencia. Adicionalmente, el fluido de procesos no se conserva fijo durante el día, provocando cambios en la eficiencia. Por tal motivo, el calor de diseño se modifica de acuerdo a los cambios de flujo, conservando en el cálculo de la misma, la variación de temperatura por la cual se diseñó.

La caída de presión se conserva en buena medida entre los valores calculados y los reales, a diferencia de los intercambiadores IC-4 y IC-6, que exceden de los valores permitidos; esto se debe a que ambos equipos poseen más horquillas que los intercambiadores IC-3 y IC-5 causando mayor fricción por pie lineal del equipo.

4.4 RESULTADOS DE LA EVALUACIÓN DE LOS INTERCAMBIADORES TIPO TUBO Y CARCASA.

En estos intercambiadores se compararon las temperaturas de salida tanto del fluido caliente como del fluido frío, así como la caída de presión tanto del lado carcasa como del lado tubo de los datos reales y los calculados. Adicionalmente, se compararon estas variables con el módulo de Aspen B-JAC, con el fin comprobar la versatilidad del programa.

A continuación se presentan en la tabla 4.11 las temperaturas de salida de los equipos de intercambio tipo tubo y carcasa

Tabla 4.11 Resultados de las temperaturas de salida de los intercambiadores tipo tubo y carcasa.

Intercambiador	Disposición de los fluidos	T _{SPC} (°F)	T _{SPR} (°F)	T _{SPC} (°F) B-JAC	%Desv. Calculada	%Desv. B-JAC
IC-15	<u>Carcasa:</u> Gasoil+Residual de vacío	98,87	229	99	56,82	56,76
	<u>Tubo:</u> Agua	90,48	96	88	5,75	9,1
IC-10A	<u>Carcasa:</u> Destilado liv.	136,8	160	111,5	14,5	30,3
	<u>Tubo:</u> Agua	83,1	112	84	25,8	25
IC-10	<u>Carcasa:</u> Destilado liv.	83,2	123	86	32,4	30,1
	<u>Tubo:</u> Agua	82,2	95	83,6	13,5	12
IP-7	<u>Carcasa:</u> Nafta	83,5	90	85,6	7,2	4,9
	<u>Tubo:</u> Agua	80,6	82	85,9	1,7	4,5
IP-7A	<u>Carcasa:</u> Nafta	84,7	89	84,2	4,9	5,3
	<u>Tubo:</u> Agua	81,8	82	84,5	0,24	2,9

Los intercambiadores IP-7/7A arrojan muy buenos resultados en las desviaciones entre los datos y los valores reportados por el simulador, esto indica que el método de cálculo y las correlaciones tomadas para su evaluación presentan una buena aproximación a la realidad operativa del equipo.

Aunque los métodos de cálculo representan una buena aproximación a la evaluación térmica de los equipos de intercambio, existe una desviación significativa en el intercambiador IC-15, con porcentajes mayores al 56,5%, esta desviación se debe a que el fluido de enfriamiento no conserva un flujo fijo a la entrada, ya que éste posee una válvula de control que se acciona con el fin de mantener la temperatura de salida

del fluido de proceso en un rango de 200-220 °F. Esta operación del equipo IC-15 hace que los cálculos de la evaluación del intercambiador no se aproximen a la temperatura real.

Las desviaciones del fluido de procesos de los intercambiadores IC-10 y IC-10A no sobrepasan el 31%; el flujo de agua posee una pequeña diferencia entre sus desviaciones tanto en los resultados calculados como en los que reporta el B-JAC, indicando nuevamente que el proceso de cálculo usado para su evaluación fue la correcta.

En cuanto a la caída de presión, se muestran los resultados en la tabla 4.12.

Tabla 4.12 Caídas de presión de los intercambiadores tipo tubo y carcasa

Intercambiador	Disposición de los fluidos	ΔP _C (psi)	ΔP _R (psi)	ΔP _R (psi) B-JAC	%Desv. Calculada	%Desv. B-JAC
IC-15	<u>Carcasa:</u> Gasoil+Residual de vacío	0,198	2	0,179	90,1	91,1
	<u>Tubo:</u> Agua	1,54	1	0,422	35,1	57,8
IC-10A	<u>Carcasa:</u> Destilado liv.	0,466	1	0,65	53,5	35
	<u>Tubo:</u> Agua	81,22	46	39,5	76,6	14,1
IC-10	<u>Carcasa:</u> Destilado liv.	0,187	1	0,215	81,3	78,5
	<u>Tubo:</u> Agua	7,95	48	0,657	83,4	99,6
IP-7	<u>Carcasa:</u> Nafta	0,042		1,18		
	<u>Tubo:</u> Agua	119.05		88,59		
IP-7A	<u>Carcasa:</u> Nafta	0,042	2	1,14	97,9	43,2
	<u>Tubo:</u> Agua	5,037	28	3,75	82	86,59

Los resultados arrojados por la tabla anterior reflejan desviaciones muy altas, tanto en el lado carcasa como en el lado tubo, esto es debido a que los equipos presentan depósitos de sólidos en sus partes internas que provocan mayor fricción, en la tabla 4.13 se muestran los intercambiadores que deben ser sacados fuera de servicio para su limpieza.

Tabla 4.13 Eficiencia y factor de obstrucción de los intercambiadores tipo tubo y carcasa.

Intercambiador	$R_{dR} < R_d$	% e
IC-15	No cumple	16.45
IC-10A	Cumple	64.91
IC-10	No cumple	46.25
IP-7	Cumple	76
IP-7A	Cumple	76

Como puede observarse los equipos que no cumplan con la condición " R_{dR} < R_d ", tales como IC-15/10 deben limpiarse en la próxima parada de planta. A diferencia de los intercambiadores que no cumplan la condición, la eficiencia de los otros equipos indica que éstos tienen un buen funcionamiento de transferir calor hacia el fluido más frío.

4.5 RESULTADOS DE LA EVALUACIÓN DE LOS CONDENSADORES.

A continuación se presentara la tabla 4.14, donde se muestran los resultados de la evaluación a través del programa Aspen B-JAC de los condensadores de los topes tanto de la torre atmosférica como la torre de vacío. Las caídas de presión por el lado carcasa de estos equipos de intercambio, representa la principal limitación, debido a que no poseen indicadores de esta variable medible a la entrada ni a la salida de los mismos.

Tabla 4.14 Resultados de la evaluación de los condensadores tipo tubo y carcasa.

Intercambiador	Disposición de los fluidos	ΔP(psi) B-JAC	ΔP _R (psi)	Condesado Real (lb/h)	Condensado B-JAC (lb/h)	% e
IC-2A/2B	Carcasa: vapor de tope TA-1	2,35		21930,07	25956,55	84,25
	<u>Tubo:</u> Agua	15	1			
IC-12	<u>Carcasa:</u> Vapor de tope TV-1	1,21		687,97	694,1	90,1
	<u>Tubo:</u> Agua	8,56	34			
IC-11	<u>Carcasa:</u> Vapor sobrecalentado	0,125			190,89	
	<u>Tubo:</u> Agua	11,1	28			

Como puede observarse la condensación del IC-2A/2B y IC-12 reales son menores a los determinados por el simulador. Sin embargo, sus eficiencias indican que los equipos están funcionando bien. En cambio, la condensación producida por el equipo IC-11 es nula. Esto es debido a resistencias generadas por incrustaciones o taponamientos de los tubos que evita la transferencia de calor y genera problemas operacionales a la planta de vacío. Al igual que la cantidad de condensado, su eficiencia no pudo ser determinada.

4.6 RESULTADOS DE LA AUTOMATIZACIÓN DE LOS CÁLCULOS DE INGENIERÍA.

La automatización consistió en determinar de manera rápida y precisa los resultados que corresponden con la evaluación de los intercambiadores de calor. En la figura 4.2 se observa la hoja de cálculo usada para la evaluación de los intercambiadores tipo horquilla y tubo y carcasa.

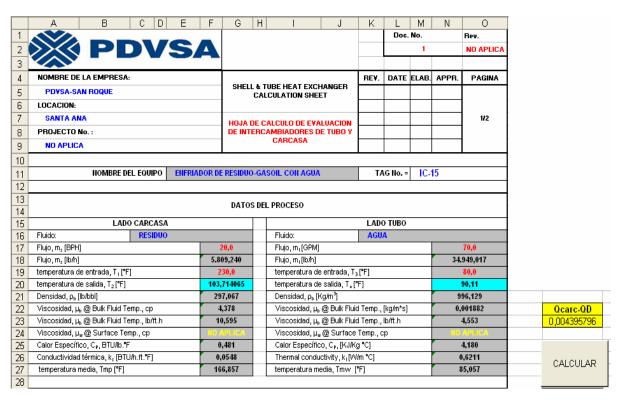


Figura 4.2 Hoja de cálculo usada para la evaluación de intercambiadores de calor

Dicha hoja de excel posee un botón que permite calcular la temperatura de salida del lado tubo y carcasa, siguiendo el procedimiento de evaluación mostrado en la figura 2.6.

CAPÍTULO V CONCLUSIONES

De los resultados obtenidos en los diferentes equipos evaluados se concluye lo siguiente:

- Los ensayos ASTM D86 y 1160, generados por el simulador, se ajustan en buena medida a los análisis hechos en el laboratorio.
- El flujo de agua que circula por la planta y entra a la torre de enfriamiento es 8369.2 GMP.
- La relación L'/G' que debe utilizarse, utilizada en la torre de enfriamiento debe ser mayor a la de diseño.
- El acanalamiento en la torre de enfriamiento es causante de la disminución de la eficiencia.
- La eficiencia en la mayoría de los intercambiadores de calor es superior al 50%.
- Los intercambiadores IC-3/4/5/6/10 y 15 deben ser sacados fuera de servicio para limpiar sus partes internas y así disminuir su resistencia a la transferencia de calor.
- La causa de la no-condensación presente en el intercambiador IC-11, es debida a una resistencia muy grande que interrumpe la transferencia de calor; por ende, se debe sacar fuera de servicio par hacerle una limpieza de sus tubos e internos.

CAPÍTULO VI RECOMENDACIONES

Luego de haber evaluado a los equipos de intercambio y de inspeccionar en forma visual cada uno de éstos, se pueden establecer las siguientes recomendaciones:

- Se debe instalar una termocupla a la entrada y salida del lado carcasa del gas de tope de los condensadores IC-2A/2B, con el fin de hacer las evaluaciones futuras con mayor facilidad.
- Se deben colocar bandejas con perforaciones en la boquilla de distribución de agua de la torre de enfriamiento, con el fin de eliminar el acanalamiento. En la figura N° 5.1 se muestra un modelo de bandeja para la distribución de agua en toda el área de transferencia.

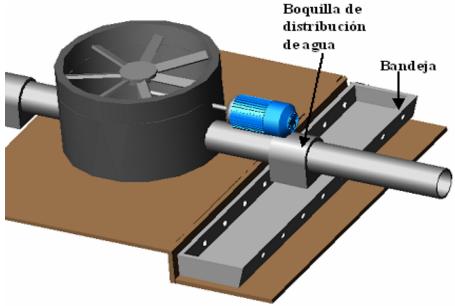


Figura N° 5.1 Modelo de bandeja para la distribución de agua por toda el área de transferencia (Elaboración Propia).

- Se debe eliminar el agua usada para mojar la superficie externa de la carcasa del condensador IC-11, ya que ésta no está garantizando la condensación del vapor que entra al intercambiador. Cabe destacar que el vacío es generado por el inyector J-2 y J-3 y que la eliminación del agua de riego no generara pérdida del vacío del sistema.
- Para obtener más cantidad de gasolina o condensados a la salida de los IC-2A/2B, se puede instalar un condensador adicional (llamado IC-2C) a la salida del acumulador de gasolina AC-1 con un pequeño tambor flash (llamado PF-2), como se muestra en la figura Nº 5.2

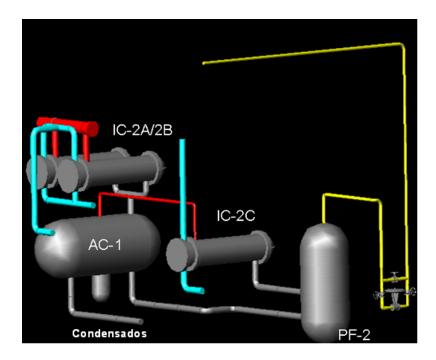


Figura Nº 5.2 Arreglo de la propuesta de diseño del intercambiador IC-2C, en el arreglo actual de condensadores IC-2A/2B.

En el anexo E se encuentran los detalles del diseño del condensador IC-2C.

CAPÍTULO VII REFERENCIAS BIBLIOGRÁFIAS

Hensley, J. (1992). "**Maximize Tower Power**". Chemical Engineering, Vol. 99 (2): 74-82.

Kern (1999). "**Procesos de Transferencia de Calor**". Trigésima primera ed. México: Compañía Editorial Continental S.A. 980 p.

Kloppers, C., Kröger, D. (2005). "A critical investigation into the heat and mass transfer analysis of counterflow wet cooling towers". Int. J. of Heat and Mass Transfer, Vol. 48: pp.765-777.

McCabe, W., Smith, J., Harriott, P.(1991). "Operaciones Unitarias en Ingeniería Química". 4ta ed. España: Editorial Mc Graw Hill. 1112 p.

Mott, R. (1997). "**Mecánica de los fluidos Aplicada**". 4ta ed. México: Editorial Mc Graw Hill. X p.

PDVSA. (1997). "Manual de Diseño de Proceso: Flujo de Fluidos, Flujo en Fase Líquida". MDP-02-FF-03.

PDVSA. (1997). "Manual de Diseño de Proceso: Intercambiadores de Calor, Principios Básicos". MDP-05-E-01.

PDVSA. (1997). "Manual de Diseño de Proceso: Intercambiador de Calor, Procedimiento de Diseño para Intercambiador Doble Tubo". MDP-05-E-04.

PDVSA. (1997). "Manual de Diseño de Proceso: Intercambiador de Calor, Intercambiadores de Tubo y Carcaza". MDP-05-E-02.

PDVSA. (1997). "Preparación de Diagramas de Procesos". L-TP 1.1.

Salazar, Helen. (2003). "Evaluación del comportamiento operativo de los equipos de las plantas de crudo y vacío de la refinería San Roque". Trabajo Especial de Grado. Universidad Central de Venezuela, Caracas.

TEMA (199). **Tubular Exchanger Manufacturers Association**; **Inc**.8va ed. New York.

Treybal, R. (1988)." **Fundamentos de Transferencia de Masa**". 2da ed. México: Editorial Mc Graw Hill. 858 p.

ANEXOS

ANEXO A

PROCEDIMIENTO DE CÁLCULO EVALUATIVO DE UN INTERCAMBIADOR TIPO HORQUILLA.

CÁLCULO TIPO PARA INTERCAMBIADOR IC-4

DATOS BASE PARA EL LADO CARCASA	DATOS BASE PARA EL LADO TUBO		
NAFTA	AGUA		
Número de Horquillas, N _H = 3	Diámetro externo del tubo, D _{eT} [in]=1,9		
Diámetro interno de la Carcasa, D _C [in] = 3,068	espesor del tubo, $x [in] = 0.145$		
Conded IDDIU 25	longitud del tubo, L_T [ft] = 24,375		
Caudal [BPH]= 35	Caudal [GPM]=53,63		
Resistencia al ensuc. Carcasa, r _C [h.ft².°F/BTU]= 0,001	Conductividad térmica del tubo, k _T [BTU/h.ft.°F] = 25		
Resistencia ai ensue. Careasa, icin.it : 1/B10]= 0,001	Resistencia al ensuc. tubo, $r_T [h.ft^2.^{\circ}F/BTU] = 0,00009$		
Temperatura de entrada [°F] =275	Temperatura de entrada [°F] =80		
Área de transferencia de	Calor / Horquilla, A [ft²] = 141		
PROPIEDADES TERMO	OFISICAS DE LOS FLUIDOS		
Rango ρ(lb/bbl)=- 0,0001T²-0,1163T+283,42 (160-350) °F	Rango ρ(lb/ft³)=-4x10 ⁻⁵ T²-0,0048T+62.92 (70-130) °F		
Cp(BTU/lb °F)=5×10 ⁻⁴ T+0,4135 (160-350) °F	Cp(Btu/lb °F)=1x10 ⁻⁶ T ² -2x10 ⁻⁴ T+1.0104 (70-130) °F		
μ(cP)=1,0615EXP(-0,0046T) (160-350) °F	μ(Km*s)=4,8387EXP(-0,0108T) (70-130) °F		
k(Btu/h ft °F)=-7×10 ⁻⁵ T+0,077 (160-350) °F	k(W/m °C)=0,0003T+0,3295 (70-190) °F		

Paso 1: Suponer temperatura de salida del fluido de procesos.

Sea
$$T_{son} = 80,76^{\circ}F$$

Paso 2: Calcular las propiedades termofísicas del fluido de procesos a la temperatura media.

$$T_{mp} = \frac{80,73 + 275^{\circ}F}{2} = 177,88^{\circ}F$$

$$\rho(T_{mp}) = -0,0001 * (177,88)^{2} - 0,1163 * (177,88) + 283,42 = 259,57(lb/bbl)$$

$$Cp(T_{mp}) = 5 \times 10^{-4} * (177,88) + 0,4135 = 0,50(Btu/lb \times {}^{\circ}F)$$

$$\mu(T_{mp}) = 1,0615 \times \exp(-0,0046 * 177,88) = 0.47(cP)$$

$$K(T_{mp}) = -7 \times 10^{-5} * (177,88) + 0,077 = 0,065(Btu/h \times lb \times {}^{\circ}F)$$

Paso 3: Calcular el calor transferido del fluido de proceso.

$$Q_{p} = m_{p}(lb/h) \times Cp(T_{m}) \times (T_{ep} - T_{sop})$$

$$Q_{p} = 35 \frac{bbl}{h} \times 259,57 \frac{lb}{bbl} \times 0,502 \frac{Btu}{lb^{\circ}F} (275 - 80,76)^{\circ}F = 8833044,21 \frac{Btu}{h}$$

Paso 4: Calcular la temperatura de salida del agua.

Como
$$|Q_P| = |Q_a| \Rightarrow Q_a = 8833044,21 \frac{Btu}{h}$$

Entonces, se debe resolver una ecuación trascendente, donde la única incógnita es la temperatura de salida del agua, para ello se deben seguir los pasos descritos a continuación:

Paso 4.1: Suponer una temperatura de salida del agua

Paso 4.2: Determinar la temperatura media del agua.

Paso 4.3: Evaluar la capacidad calorífica y la densidad del agua a la temperatura media.

Paso 4.4: Determinar el calor absorbido por el agua.

Paso 4.5: Verificar:

- Si $|Q_P| |Q_a| = 0$, entonces la temperatura supuesta de salida del agua es la correcta, se debe seguir al paso 5.
- Si $|Q_P| |Q_a| \neq 0$, entonces la temperatura supuesta no es la correcta, se debe suponer otra temperatura y repetir los pasos desde 4.2 hasta 4.5.

Paso 4.1: Sea
$$T_{sa} = 109,50^{\circ} F$$

Paso 4.2:
$$T_{ma} = \frac{(109,50+80)^{\circ} F}{2} = 94,75^{\circ} F$$

Paso 4.3:

$$\begin{split} Cp(T_{ma}) &= -1 \times 10^{-6} * (94,75^{\circ}F)^{2} - 2 \times 10^{-4} * (94,75) + 1,0104 = 0,998 \bigg(\frac{Btu}{lb \times^{\circ} F} \bigg) \\ & \rho_{T}(T_{ma}) = -4 \times 10^{-5} * (94,75^{\circ}F)^{2} - 0,0048 * (94,75^{\circ}F) + 62,92 = 62,07 \bigg(\frac{lb}{ft^{3}} \bigg) \\ & \text{Paso 4.4: } \ \, \frac{\bullet}{m_{a}} (\frac{lb}{h}) = 56,63 \frac{gal}{\min} \times \frac{1ft^{3}}{7,48052gal} \times 62,07 \frac{lb}{ft^{3}} \times 60 \frac{\min}{h} \\ & \stackrel{\bullet}{m_{a}} = 28273,75 \frac{lb}{h} \end{split}$$

$$Q_a = 28273,75 \frac{lb}{h} \times 0,998 \frac{Btu}{lb^{\circ} F} \times (109,75-80)^{\circ} F = 833044,21 \frac{Btu}{h}$$

Paso 4.5: $|Q_P| - |Q_a| = 833044,21 - 8833044,21 = 0$, como la temperatura supuesta satisface la condición, entonces esta representa la Temperatura de salida del agua.

Paso 5: Calcular el coeficiente interno de transferencia de calor del tubo.

Se usara la correlación de Eagle & Ferguson (1930), que es exclusivo para el agua que circula dentro de tubos

$$h_i = \frac{4200 \times (1.35 + V^{0.8} (m/s) \times T_{ma} (^{\circ}C))}{(D_{T} (mm))^{0.2}}$$

$$V_{T}(m/s) = \frac{\frac{m_{a}(lb/h)}{\rho_{T}(lb/ft^{3})} \times \frac{0.0283169m^{3}}{1ft^{3}} \times \frac{1h}{3600s}}{\frac{1}{4} \times \pi \times \left(D_{iT}(in) \times \frac{0,0254m}{1in}\right)^{2}} = \frac{\frac{28273,75\frac{lb}{h}}{62,07\frac{kg}{m^{3}}} \times \frac{0,0283169m^{3}}{1ft} \times \frac{1h}{3600s}}{\frac{1}{4} \times \pi \times \left(1,755in \times \frac{0,0254m}{1in}\right)^{2}}$$

$$V_T = 2,3 \frac{m}{s}$$

$$h_{i} = \frac{4200 \times \left(1,35 + \left(2,3\frac{m}{s}\right)^{0.8} \times \left(\frac{109,5^{\circ} F - 32}{1,8}\right)^{\circ} C\right)}{\left(1,755in \times \frac{25,4mm}{1in}\right)^{0.2}} = 7826,26\frac{W}{m^{2}K}$$

Luego se llevan a unidades inglesas

$$h_{i} = \frac{7826,26 \frac{W}{m^{2} K}}{5,6782 \frac{Btu}{h \times ft^{2} \times {}^{\circ}F}} = 1378,29 \frac{Btu}{h \times ft^{2} \times {}^{\circ}F}$$

Entonces se debe referir al diámetro externo del tubo:

$$h_{io} = h_i \times \frac{D_{iT}}{D_{eT}} = 1378,29 \times \frac{1,755in}{1,9in} = 1273,105 \frac{Btu}{h \times ft^2 \times {}^{\circ}F}$$

Paso 6: Calcular el coeficiente externo de transferencia de calor del tubo o coeficiente lado carcasa.

En este caso se usara la correlación de Sieder y Tate.

$$h_o = \frac{Nu \times k_C}{D_e}$$

Donde
$$Nu = 0.027 \times \text{Re}^{0.8} \times \text{Pr}^{\frac{1}{3}} \times \left(\frac{\mu_C}{\mu_{WeT}}\right)^{0.14}$$

Donde el número de Reynold es

$$Re = \frac{\stackrel{\bullet}{m_p} \left(\frac{lb}{h} \right) \times D_e}{\mu_C \times A_{FlujoAnular}}$$

El diámetro equivalente para la transferencia de calor de un intercambiador de doble tubo es:

$$D_e = \frac{\left(D_C(in)\right)^2 - \left(D_{eT}(in)\right)^2}{D_{eT}(in)}$$

$$D_e = \left(\frac{(3,068in)^2 - (1,9in)^2}{(1,9in)^2}\right) \times \frac{1ft}{12in} = 0,254ft$$

El área de flujo anular es
$$A_{FlujoAnular} = \frac{\pi}{4} \times (D_C^2 - D_{eT}^2)(in^2)$$

$$A_{FlujoAnular} = \frac{\pi}{4} \times \left((3,068in)^2 - (1,9in)^2 \right) \times \frac{1ft^2}{144in^2} = 0.0316ft^2$$

Entonces se tiene que

Re =
$$\frac{8535,63\frac{lb}{h} \times 0.254 ft}{2,42\frac{lb}{ft \times h} \times 0.0316 ft^{2}} = 60561$$

$$\Pr = \frac{\mu(cP) \times \frac{2,42 \frac{lb}{ft \times h}}{1cP} \times Cp(\frac{Btu}{lb^{\circ}F})}{k_{c}(\frac{Btu}{h \times ft \times {}^{\circ}F})} = \frac{0,46cP \times \frac{2,42 \frac{lb}{ft \times h}}{1cP} \times 0,50 \frac{Btu}{lb^{\circ}F}}{0,0645 \frac{Btu}{h \times ft \times {}^{\circ}F}} = 8,82$$

Para determinar la viscosidad a la temperatura externa del tubo interno, se debe determinar dicha temperatura, para ello se procede como sigue:

Paso 6.1: Suponer temperatura de pared externa del tubo interno T_n .

Paso 6.2: Calcular las viscosidades del fluido de proceso a T_{mp} y T_p , determinar el número de Nusselt, seguido del coeficiente externo del lado carcasa.

Paso 6.3: Calcular el calor radial interno del tubo $Q_{\scriptscriptstyle A}$, que va desde $T_{\scriptscriptstyle ma}$ hasta la pared externa del tubo $T_{\scriptscriptstyle p}$. Ver la figura A.1.

Paso 6.4: Calcular el calor radial externo del tubo $Q_{\it B}$, que va desde la $T_{\it p}$ hasta la temperatura media del fluido de proceso $T_{\it mp}$. Ver la figura A.1.

Paso 6.5: Verificar:

- Si $|Q_A| |Q_B| = 0$, entonces la temperatura supuesta de la pared externa del tubo es la correcta, seguir al paso N° 7.
- Si $|Q_A| |Q_B| \neq 0$, entonces se debe suponer otra temperatura de la pared externa del tubo y repetir los pasos 6.2 hasta 6.5.

Paso 6.1: Sea $T_p = 199,879$ °F

Paso 6.2: la viscosidad del fluido de proceso a T_{mp} : $\mu(T_{mp}) = 0.462cP$

$$T_p$$
: $\mu(T_p) = 0.463cP$

$$h_{o} = \frac{Nu \times k_{C}}{D_{e}} = \frac{0,027 \times (60561)^{0.8} \times (8,82)^{\frac{1}{3}} \times \left(\frac{0,462cP}{0,463cP}\right)^{0.14} \times 0,065 \frac{Btu}{h \times ft \times {}^{\circ}F}}{0,254 ft}$$

$$h_{o} = 94,73 \frac{Btu}{h \times ft^{2} \times {}^{\circ}F}$$

Paso 6.3: Calcular el calor radial $\mathcal{Q}_{\scriptscriptstyle{A}}$, para ellos se usara la figura A.1

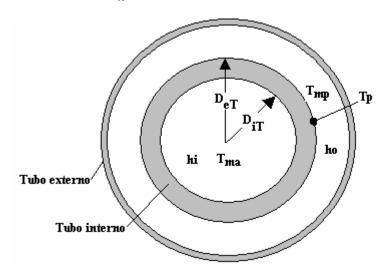


Figura A.1 Sección transversal del intercambiador de calor (Elaboración propia)

$$\begin{split} Q_{A} &= \frac{T_{ma} - T_{p}}{\frac{1}{h_{i} \times D_{iT} \times L \times \frac{1ft}{12in}} + \frac{Ln\left(\frac{D_{eT}}{D_{iT}}\right)}{2 \times \pi \times k_{W} \times L}} \\ &= \frac{94,75^{\circ}F - 177,879F}{\frac{1}{1378,29\left(\frac{Btu}{h \times ft^{2} \times {}^{\circ}F}\right) \times \pi \times 24,375 \, ft \times 1,755 in \times \frac{1ft}{12in}} + \frac{Ln\left(\frac{1,9in}{1,755in}\right)}{2 \times 25 \frac{Btu}{h \times ft \times {}^{\circ}F} \times \pi \times 24,375 \, ft}} \\ Q_{A} &= -0,031 \frac{Btu}{h} \end{split}$$

Paso 6.4:

$$Q_{B} = \frac{T_{P} - T_{mp}}{1} = \frac{177,879^{\circ}F - 177,88^{\circ}F}{1}$$

$$\frac{1}{h_{o} \times \pi \times L \times D_{C} \times \frac{1ft}{12in}} = \frac{1}{44,124 \left(\frac{Btu}{h \times ft^{2} \times {}^{\circ}F}\right) \times \pi \times 24,375 ft \times 3,068 in \times \frac{1ft}{12in}}$$

$$Q_{B} = -0,031 \frac{Btu}{h}$$

Paso 6.5: Verificar:

Como $|Q_A| - |Q_B| = -0.031 + 0.031 = 0.001$, entonces la temperatura supuesta de la pared externa del tubo es la correcta, seguir al paso N° 7.

PASO 7: Determinar el coeficiente global de transferencia de calor.

$$U = \frac{1}{R_1 + R_2 + R_3 + R_4 + R_5}$$
Donde $R_1 = \frac{D_{eT}(in)}{h_{io} \times D_{iT}(in)} = \frac{1,9in}{1273,105 \left(\frac{Btu}{h \times ft^2 \times {}^{\circ}F}\right) \times 1,755in} = 8,5 \times 10^{-4} \frac{h \times ft^2 \times {}^{\circ}F}{Btu}$

$$R_{2} = \frac{r_{T} \left(\frac{h \times ft^{2} \times {}^{\circ}F}{Btu}\right) \times D_{eT}(in)}{D_{iT}(in)} = \frac{9 \times 10^{-5} \left(\frac{h \times ft^{2} \times {}^{\circ}F}{Btu}\right) \times 1,9in}{1,755in} = 1 \times 10^{-4} \frac{h \times ft^{2} \times {}^{\circ}F}{Btu}$$

$$R_{3} = \frac{D_{eT}(in) \times \frac{1 ft}{12 in} \times Ln \left(\frac{D_{eT}}{D_{iT}}\right)}{2 \times k_{w}} = \frac{1,9 in \times \frac{1 ft}{12 in} \times Ln \left(\frac{1,9 in}{1,755 in}\right)}{2 \times 25 \frac{Btu}{h \times ft \times {}^{\circ}F}} = 3,02 \times 10^{-3} \frac{h \times ft^{2} \times {}^{\circ}F}{Btu}$$

$$R_{1} = \frac{1}{h_{o}} = \frac{1}{94,734 \left(\frac{Btu}{h \times ft^{2} \times {}^{\circ}F}\right)} = 1,056 \times 10^{-2} \frac{h \times ft^{2} \times {}^{\circ}F}{Btu}$$

$$R_5 = 1 \times 10^{-3} \, \frac{h \times ft^2 \times^{\circ} F}{Btu}$$

Entonces

$$U = \frac{1}{\left(8.5 \times 10^{-4} + 1 \times 10^{-4} + 3.02 \times 10^{-3} + 1.056 \times 10^{-2} + 1 \times 10^{-3}\right) \frac{h \times ft^{2} \times {}^{\circ}F}{Btu}} = 64,432 \frac{Btu}{h \times ft^{2} \times {}^{\circ}F}$$

PASO 8: Calcular el calor de Diseño.

El calor de diseño está representado por la siguiente expresión:

$$Q_D = U \times A \times \Delta TML$$

Para determinar la diferencia de temperatura media logarítmica, se debe identificar si el equipo opera en contra flujo o en flujo paralelo cono se muestra en la figura N°2.3.

Para el caso de equipo IC-4, es en contra corriente como se muestra en la figura A.2

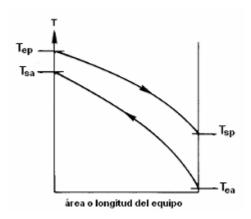


Figura A.2 Representación gráfica del comportamiento en contra corriente del IC-4.

$$\Delta TML = \frac{\left(T_{ep} - T_{sa}\right) - \left(T_{sp} - T_{ea}\right)}{Ln\left(\frac{T_{ep} - T_{sa}}{T_{sp} - T_{ea}}\right)} = \frac{\left(275 - 109,5\right)^{\circ} F - \left(80,76 - 80\right)^{\circ} F}{Ln\left(\frac{\left(275 - 109,5\right)^{\circ} F}{\left(80,76 - 80\right)^{\circ} F}\right)} = 30,56^{\circ} F$$

Finalmente

$$Q_D = 64,432 \frac{Btu}{h \times ft^2 \times {}^{\circ}F} \times 3 \times (141) ft^2 \times 30,56 {}^{\circ}F = 833044,21 \frac{Btu}{h}$$

PASO 8: Comparar el resultado del calor de diseño con el calor del proceso.

En este paso se tiene el siguiente procedimiento:

Paso 8.1: Verificar:

- Si $|Q_D| |Q| = 0$, entonces la temperatura supuesta de la salida del fluido de procesos, representa la verdadera temperatura a la cual sale el intercambiador (cuando está limpio).
- Si $|Q_D| |Q| \neq 0$, entonces se debe suponer otra T_{sp} , se deben repetir los pasos desde el 1 al 8.

En este caso se cumple la condición $|Q_D|-|Q|=0$, que significa que la temperatura supuesta de salida del fluido de procesos ajusta perfectamente al balance térmico del equipo.

CÁLCULO DE LA CAÍDA DE PRESIÓN.

CAÍDA DE PRESIÓN LADO CARCASA.

$$\begin{split} &\Delta P_{c} = \left(\frac{4\times f\times G_{c}^{2}\left(\frac{lb}{h\times ft^{2}}\right)\times L_{T}(ft)}{2\times g\left(\frac{ft}{h^{2}}\right)\times \rho_{c}\left(\frac{lb}{ft^{3}}\right)\times D_{e}'(ft)}\right)\times \frac{1ft^{2}}{144in^{2}} \\ &G_{c} = \frac{\frac{1}{M_{p}}}{A_{fc}} = \frac{35\frac{bbl}{min}\times 259,57\frac{lb}{bbl}\times 60\frac{min}{h}}{\frac{\pi}{4}\times \left(\left(D_{c}(in)\right)^{2}-\left(D_{eT}(in)\right)^{2}\right)} = \frac{8535,63\frac{lb}{h}}{\frac{\pi}{4}\times \left(\left(3,068in\right)^{2}-\left(1,9in\right)^{2}\right)\times \frac{1ft^{2}}{144in^{2}}} = 269701,94\frac{lb}{h\times ft^{2}} \\ &\rho_{c} = 259,57\frac{bl}{bbl}\times \frac{1bbl}{5,61458ft^{3}} = 46,23\frac{bl}{ft^{3}} \\ &D_{e}' = \left(D_{c}(in)-D_{eT}(in)\right)\times \frac{1ft}{12in} = \left(3,068in-1,9in\right)\times \frac{1ft}{12in} = 0,0973ft \\ &f = 1.756\times \text{Re}^{-0.192} \\ &f = 1.756\times \left(60561\right)^{-0.192} = 0,212 \end{split}$$

$$&\Delta P_{c} = \left(\frac{4\times 0,212\times \left(269701,94\frac{lb}{h\times ft^{2}}\right)^{2}\times 24,375ft}{2\times \left(4,18\times 10^{+8}\frac{ft}{h^{2}}\right)\times 46,23\frac{lb}{ft^{3}}\times 0,0973ft}\right)\times \frac{1ft^{2}}{144in^{2}} = 2,77psi \end{split}$$

$$\Delta P_{ES} = \frac{N \times \left(V(\frac{ft}{h})\right)^{2} \times \rho_{c}(\frac{lb}{ft^{3}})}{2 \times g} = \frac{4 \times \left(\frac{G_{c}(\frac{lb}{h \times ft^{2}})}{\rho_{c}(\frac{lb}{ft^{3}})}\right) \times \rho_{c}(\frac{lb}{ft^{3}})}{2 \times \left(4,18 \times 10^{+8} \frac{ft}{h^{2}}\right)}$$

$$= \left(\frac{4 \times \left(\frac{269701,94 \frac{lb}{h \times ft^{2}}}{46,23 \frac{lb}{ft^{3}}}\right)^{2} \times 46,23 \frac{lb}{ft^{3}}}{2 \times \left(4,18 \times 10^{+8} \frac{ft}{h^{2}}\right)} \times \frac{1ft^{2}}{144in^{2}} = 0,039 \, psi$$

Entonces la caída de presión lado carcasa es

$$\Delta P_{TC} = \Delta P_C + \Delta P_{ES} = 2,77 \, psi + 0,039 \, psi = 2,82 \, psi$$

CAÍDA DE PRESIÓN LADO TUBO.

$$\Delta P_{T} = \left(\frac{4 \times f \times \left(G_{T}\left(\frac{lb}{h \times ft^{2}}\right)\right)^{2} \times L_{T}(ft)}{2 \times g\left(\frac{ft}{h^{2}}\right) \times \rho_{c}\left(\frac{lb}{ft^{3}}\right) \times D_{iT}(ft)}\right) \times \frac{1ft^{2}}{144in^{2}}$$

$$G_{T} = \frac{\frac{\bullet}{M_{a}}}{A_{fT}} = \frac{28273,75\frac{lb}{h}}{\frac{\pi}{4} \times (D_{iT}(in))^{2} \times \frac{1ft^{2}}{144in^{2}}} = \frac{28273,75\frac{lb}{h}}{\frac{\pi}{4} \times (1,755in)^{2} \times \frac{1ft^{2}}{144in^{2}}} = 1683068,75\frac{lb}{h \times ft^{2}}$$

$$f = 0,0035 + \frac{0,264}{\left(\frac{D_{iT}(in) \times G_T\left(\frac{lb}{h \times ft^2}\right)}{\mu_T\left(\frac{lb}{h \times ft}\right)}\right)}$$

$$\mu_T(T_{ma}) = 4,8387 \times \exp(-0.0108 \times 94,75^{\circ} F) = 1,739 \frac{lb}{h \times ft}$$

$$f = 0,0035 + \frac{0,264}{\left(\frac{1,755in \times \frac{1ft}{12in} \times 1683068,75 \frac{lb}{h \times ft^2}}{1,739 \frac{lb}{h \times ft}}\right)}$$

$$f = 0.0053$$

$$\Delta P_{T} = \left(\frac{4 \times 0,0053 \times \left(1683068,75 \frac{lb}{h \times ft^{3}}\right)^{2} \times 24,375 ft}{2 \times \left(4,18 \times 10^{+8} \frac{lb}{h^{2}}\right) \times 62,074 \frac{lb}{ft^{3}} \times 1,755 in \times \frac{1 ft}{12 in}}\right) \times \frac{1 ft}{12 in} = 1.34 psi$$

ANEXO B

PROCEDIMIENTO DE CÁLCULO EVALUATIVO DE UN INTERCAMBIADOR TIPO TUBO Y CARCASA.

CÁLCULO TIPO PARA EL INTERCAMBIADOR IC-15

DATOS BASE PARA EL LADO	CARCASA	DATOS BASE PARA EL LADO TUBO		
RESIDUO DE VACÍO + GA	ASOIL	AGUA		
Caudal [BPH]= 20		Diámetro externo del tubo, D _{eT} [in]=0,75		
Diámetro interno de la Carcasa, D _C [i	in] = 12,09	Diámetro interno del tubo, D _{iT} [in]=0,667		
Número de Deflectores, N _B =	45	longitud del tubo, L _T [ft] = 15,	427	
Espaciamiento entre Deflectores, B	[in]=3,75	Caudal [GPM]=53,63		
Resistencia al ensuc. Carcasa, r _C [h.ft².°F/BTU]= 0,0005		Conductividad térmica del tubo, k_W [BTU/h.ft.°F] = 25 Resistencia al ensuc. tubo, r_T [h.ft².°F/BTU] = 0,00009		
Temperatura de entrada [°F] =	:230	Temperatura de entrada [°F] =80		
		Número de pasos por los tubos	, Np=2	
		Número de tubos, N _T =94		
		Pitch, P _T [in]=0,952		
		Arreglo de los tubos: Triangu	ular	
Área	de transferencia	de Calor, A [ft ²] = 289		
PROPIED	ADES TERMOF	ISICAS DE LOS FLUIDOS		
	Rango		Rango	
ρ(lb/bbl)=- 0,00003T ² - 0,0927T+313,37	(200-450) °F	$\rho(\text{lb/ft}^3)$ =-4x10 ⁻⁵ T ² -0,0048T+62.92	(70-130) °F	
Cp(BTU/lb °F)=5×10 ⁻⁴ T+0,3982	(200-450) °F	Cp(Btu/lb °F)=1x10 ⁻⁶ T ² -2x10 ⁻⁴ T+1.010	4 (70-130) °F	
μ(cP)=14,8EXP(- 0,0073T)	(200-450) °F	μ(Km*s)=4,8387EXP(-0,0108T)	(70-130) °F	
k(Btu/h ft °F)=- 3×10 ⁻⁵ T+0,06	(200-450) °F	k(W/m °C)=0,0003T+0,3295	(70-190) °F	

Paso 1: Suponer temperatura de salida del fluido de procesos.

Sea
$$T_{sop} = 98,87^{\circ}F$$

Paso 2: Calcular las propiedades termofísicas del fluido de procesos a la temperatura media.

$$T_{mp} = \frac{98,87 + 230^{\circ}F}{2} = 164,43^{\circ}F$$

$$\rho(T_{mp}) = -0,00003 \times (164,43)^{2} - 0,0927 \times (164,43) + 313,37 = 297,316(lb/bbl)$$

$$Cp(T_{mp}) = 5 \times 10^{-4} * (164,43) + 0,3982 = 0,481(Btu/lb \times {}^{\circ}F)$$

$$\mu(T_{mp}) = 14,8 \times \exp(-0,0073 \times 164,43) = 4,456(cP)$$

$$K(T_{mp}) = -3 \times 10^{-5} \times (164,43) + 0,06 = 0,0549(Btu/h \times lb \times {}^{\circ}F)$$

Paso 3: Calcular el calor transferido del fluido de proceso.

$$Q_{p} = m_{p}(lb/h) \times Cp(T_{m}) \times (T_{ep} - T_{sop})$$

$$Q_{p} = 20 \frac{bbl}{h} \times 297,316 \frac{lb}{bbl} \times 0,481 \frac{Btu}{lb^{\circ}F} (230 - 98,87)^{\circ}F = 365551,55 \frac{Btu}{h}$$

Paso 4: Calcula de la temperatura de salida del agua.

Como
$$|Q_P| = |Q_a| \Rightarrow Q_a = 365551,55 \frac{Btu}{h}$$

Entonces, se debe resolver una ecuación trascendente, donde la única incógnita es la temperatura de salida del agua, para ello se debe seguir los siguientes pasos:

- Paso 4.1: Suponer una temperatura de salida del agua
- Paso 4.2: Determinar la temperatura media del agua.
- Paso 4.3: Evaluar la capacidad calorífica y la densidad del agua a la temperatura media.
- Paso 4.4: Determinar el calor absorbido por el agua.

Paso 4.5: Verificar:

- Si $|Q_P| |Q_a| = 0$, entonces la temperatura supuesta de salida del agua es la correcta, se debe seguir al paso 5.
- Si $|Q_P| |Q_a| \neq 0$, entonces la temperatura supuesta no es la correcta, se debe suponer otra temperatura y repetir los pasos desde 4.2 hasta 4.5.

Paso 4.1: Sea
$$T_{sa} = 90,48^{\circ} F$$

Paso 4.2:
$$T_{ma} = \frac{(90,48+80)^{\circ} F}{2} = 85,24^{\circ} F$$

Paso 4.3:

$$Cp(T_{ma}) = -1 \times 10^{-6} * (85,24^{\circ} F)^{2} - 2 \times 10^{-4} * (85,24^{\circ} F) + 1,0104 = 0,999 \left(\frac{Btu}{lb \times^{\circ} F}\right)$$

$$\rho_T(T_{ma}) = -4 \times 10^{-5} * (85,24^{\circ}F)^2 - 0,0048 * (85,24^{\circ}F) + 62,92 = 62,18 \left(\frac{lb}{ft^3}\right)$$

Paso 4.4:
$$m_a(lb/h) = 70 \frac{gal}{\min} \times \frac{1ft^3}{7,48052gal} \times 62,18 \frac{lb}{ft^3} \times 60 \frac{\min}{h}$$

$$m_a = 34949,017 \frac{lb}{h}$$

$$Q_a = 34949,017 \frac{lb}{h} \times 0,999 \frac{Btu}{lb^{\circ} F} \times (90,48-80)^{\circ} F = 365551,55 \frac{Btu}{h}$$

Paso 4.5: $|Q_P| - |Q_a| = 365551,55 - 365551,551 = 0,001$, como la temperatura supuesta satisface la condición, entonces esta representa la Temperatura de salida del agua.

Paso 5: Calcular el coeficiente de tranferencia de calor por convección interno del tubo.

Se usará la correlación de Eagle & Ferguson (1930), que es exclusivo para el agua que circula dentro de tubos.

$$h_i = \frac{4200 \times (1,35 + V^{0,8}(m/s) \times T_{ma}(^{\circ}C))}{(D_{TT}(mm))^{0,2}}$$

$$V_{T}(m/s) = \frac{N_{p} \times \frac{m_{a}(lb/h)}{\rho_{T}(lb/ft^{3})} \times \frac{0.0283169m^{3}}{1ft^{3}} \times \frac{1h}{3600s}}{N_{T} \times \frac{1}{4} \times \pi \times \left(D_{iT}(in) \times \frac{0.0254m}{1in}\right)^{2}} = \frac{2 \times \frac{34949,017 \frac{lb}{h}}{62,18 \frac{lb}{ft^{3}}} \times \frac{0.0283169m^{3}}{1ft} \times \frac{1h}{3600s}}{94 \times \frac{1}{4} \times \pi \times \left(0.667in \times \frac{0.0254m}{1in}\right)^{2}}$$

$$V_T = 0.417 \frac{m}{s}$$

$$h_{i} = \frac{4200 \times \left(1,35 + \left(0,417 \frac{m}{s}\right)^{0.8} \times \left(\frac{85,24^{\circ}F - 32}{1,8}\right)^{\circ}C\right)}{\left(1,667 in \times \frac{25,4 mm}{1 in}\right)^{0.2}} = 2301,933 \frac{W}{m^{2}K}$$

Luego se llevan a unidades inglesas

$$h_{i} = \frac{2301,933 \frac{W}{m^{2} K}}{5,6782 \frac{Btu}{h \times ft^{2} \times {}^{\circ}F}} = 405,398 \frac{Btu}{h \times ft^{2} \times {}^{\circ}F}$$

Luego se refiere al diámetro externo:

$$h_{io} = h_i \times \frac{D_{iT}}{D_{oT}} = 405,398 \times \frac{0,667in}{0,75in} = 360,53 \frac{Btu}{h \times ft^2 \times {}^{\circ}F}$$

Paso 6: Cálculo del coeficiente externo o lado carcasa.

En este caso se usara una correlación que depende del área libre del deflector y se obtuvo a partir de datos realizados por Donohue en 1949:

$$h_{o}\left(\frac{Btu}{h \times ft^{2} \times {}^{\circ}F}\right) = \frac{\left(0.23 \times \left(D_{e}(in)\right)^{0.6} \times \left(\operatorname{Re}_{eq}\right)^{0.6} \times \left(\operatorname{Pr}\right)^{0.33}\right) \times K_{C}\left(\frac{Btu}{h \times ft \times {}^{\circ}F}\right)}{D_{e}(ft)}$$

El diámetro equivalente para un arreglo traingular de los tubos es:

$$D_{e} = \frac{4 \times A_{f}(in^{2})}{P_{m}} = \frac{4 \times \left[\frac{\sqrt{3}}{4} \times (P_{T}(in))^{2} - \frac{\pi}{8}(D_{eT}(in))^{2}\right]}{\frac{\pi}{2}D_{eT}(in)}$$

$$= \frac{4 \times \left[\frac{\sqrt{3}}{4} \times (0.952in)^{2} - \frac{\pi}{8}(0.75in)^{2}\right]}{\frac{\pi}{2}(0.75in)} = 0.583in$$

$$A_{fTOTAL} = \left(\frac{P_{T} - D_{eT}}{P_{T}}\right) \times D_{C}(in) \times B(in) = \left(\frac{0.952in - 0.75in}{0.952in}\right) \times 12,09in \times 3,75in = 9.62in^{2}$$

$$Re_{eq} = \frac{D_{eT}(in) \times \frac{1ft}{12in} \times G_{W}\left(\frac{lb}{h \times ft^{2}}\right)}{\mu\left(\frac{lb}{ft \times h}\right)}$$

$$G_{W} = \frac{ih}{\left(A_{fTOTAL}, A_{LibreB}\right)^{0.5}(in)^{2} \times \frac{1ft^{2}}{14Ain^{2}}}$$

El área libre del deflector corresponde el área del corte de la ventana menos el área transversal de los tubos que pasan por el área de la ventana, en la figura B.1 se muestra el área transversal del deflector y su área libre se determina de la forma:

$$\begin{split} A_{LibreB} &= A_{sombra} = A_{1} - \sum A_{T} \\ A_{1} &= \frac{1}{2} \times \left(\frac{D_{deflector}}{2} \right)^{2} \times \left(2 \times \theta - Sen(2 \times \theta) \right) = \frac{1}{2} \times \left(\frac{11,9375in}{2} \right)^{2} \times \left(\frac{\pi}{2} - Sen\left(\frac{\pi}{2}\right) \right) \\ A_{1} &= 10,167in^{2} \\ A_{T} &= \pi \times \left(\frac{D_{iT}}{2} \right)^{2} = \pi \times \left(\frac{0,75in}{2} \right)^{2} = 0,442in^{2} \\ \sum A_{T} &= 2A_{T} + \frac{A_{T}}{2} + \frac{A_{T}}{2} = 3 \times A_{T} = 3 \times 0,442in^{2} = 1,325in^{2} \\ A_{LibreB} &= 10,167in^{2} - 1,325in^{2} = 8,842in^{2} \end{split}$$

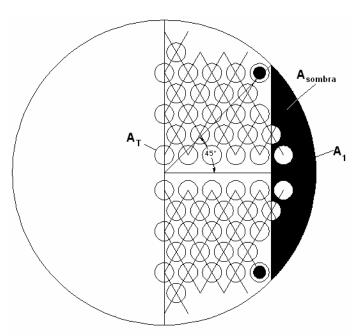


Figura B.1 Sección transversal del deflector del intercambiador IC-15.

$$G_W = \frac{20\frac{bbl}{h} \times 297,87\frac{lb}{bbl}}{\left(9,62in^2 \times 8,842in^2\right)^{0.5} \times \frac{1ft^2}{144in^2}} = 90701,593\frac{lb}{h \times ft^2}$$

$$Re_{eq} = \frac{0,583in \times \frac{1ft}{12in} \times 90701,593 \frac{lb}{h \times ft^{2}}}{4,456cP \times \frac{2,42 \frac{lb}{ft \times h}}{1cP}} = 409$$

$$\Pr = \frac{Cp\left(\frac{Btu}{lb^{\circ}F}\right) \times \mu\left(\frac{lb}{ft \times h}\right)}{K_{c}\left(\frac{Btu}{h \times ft \times {}^{\circ}F}\right)} = \frac{0.481 \frac{Btu}{lb^{\circ}F} \times 4.456cP \frac{2.42 \frac{lb}{ft \times h}}{1cP}}{0.0549 \frac{Btu}{h \times ft \times {}^{\circ}F}} = 94,343$$

$$h_{o} = \frac{\left(0.23 \times \left(0.583 in\right)^{0.6} \times \left(409\right)^{0.6} \times \left(94.343\right)^{0.33}\right) \times \left(0.0549 \frac{Btu}{h \times ft \times {}^{\circ}F}\right)}{0.583 in \times \frac{1ft}{12 in}} = 24.155 \frac{Btu}{h \times ft^{2} \times {}^{\circ}F}$$

Paso 7: Calcular el coeficiente global de transferencia de calor.

$$U = \frac{1}{R_1 + R_2 + R_3 + R_4 + R_5}$$
Donde $R_1 = \frac{D_{eT}(in)}{h_{io} \times D_{iT}(in)} = \frac{0.75in}{405,398 \left(\frac{Btu}{h \times ft^2 \times {}^\circ F}\right) \times 0,667in} = 3,12 \times 10^{-3} \frac{h \times ft^2 \times {}^\circ F}{Btu}$

$$R_2 = \frac{r_T \left(\frac{h \times ft^2 \times {}^\circ F}{Btu}\right) \times D_{eT}(in)}{D_{iT}(in)} = \frac{9 \times 10^{-5} \left(\frac{h \times ft^2 \times {}^\circ F}{Btu}\right) \times 0,75in}{0,667in} = 1 \times 10^{-4} \frac{h \times ft^2 \times {}^\circ F}{Btu}$$

$$R_3 = \frac{D_{eT}(in) \times \frac{1ft}{12in} \times Ln \left(\frac{D_{eT}}{D_{iT}}\right)}{2 \times k_W} = \frac{0,75in \times \frac{1ft}{12in} \times Ln \left(\frac{0,75in}{0,6675in}\right)}{2 \times 25 \frac{Btu}{h \times ft \times {}^\circ F}} = 1,76 \times 10^{-3} \frac{h \times ft^2 \times {}^\circ F}{Btu}$$

$$R_4 = \frac{1}{h_o} = \frac{1}{24,155 \left(\frac{Btu}{h \times ft^2 \times {}^\circ F}\right)} = 0,0414 \frac{h \times ft^2 \times {}^\circ F}{Btu}$$

$$R_5 = r_C \left(\frac{h \times ft^2 \times^{\mathbf{o}} F}{Btu} \right) = 5 \times 10^{-4} \frac{h \times ft^2 \times^{\mathbf{o}} F}{Btu}$$

Entonces
$$U = \frac{1}{\left(3,12 \times 10^{-3} + 1 \times 10^{-4} + 1,76 \times 10^{-3} + 0,0414 + 5 \times 10^{-4}\right) \frac{h \times ft^2 \times {}^{\circ}F}{Btu}} = 21,33 \frac{Btu}{h \times ft^2 \times {}^{\circ}F}$$

PASO 8: Calcular el calor de diseño:

$$Q_D = U \times A \times F \times \Delta TML$$

Para determinar la diferencia de temperatura media logarítmica, se debe identificar si el equipo opera en contra flujo o en flujo paralelo cono se muestra en la figura N°2.3.

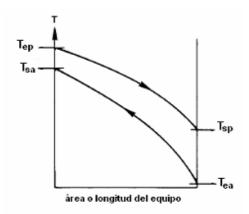


Figura B.2 Representación gráfica del comportamiento supuesto en contra corriente del IC-15 El equipo IC-15 está en flujo paralelo, sin embargo se debe determinra el ΔTML como si este fuera en contra corriente

$$\Delta TML = \frac{\left(T_{ep} - T_{sa}\right) - \left(T_{sp} - T_{ea}\right)}{Ln\left(\frac{T_{ep} - T_{sa}}{T_{sp} - T_{ea}}\right)} = \frac{\left(230 - 90,48\right)^{\circ} F - \left(98,87 - 80\right)^{\circ} F}{Ln\left(\frac{\left(230 - 90,48\right)^{\circ} F}{\left(98,87 - 80\right)^{\circ} F}\right)} = 60,31^{\circ} F$$

Luego se debe corregir ΔTML , para ello se debe determinar el factor F .

$$P = \frac{T_{sa} - T_{ea}}{T_{en} - T_{sa}} = \frac{(90,48 - 80)^{\circ} F}{(230 - 80)^{\circ} F} = 0,07$$

$$R = \frac{T_{ep} - T_{sp}}{T_{sq} - T_{eq}} = \frac{(230 - 98,87)^{\circ} F}{(90,48 - 80)^{\circ} F} = 12,516$$

$$X = \frac{1 - \left(\frac{1 - R \times P}{1 - P}\right)^{\frac{1}{N_p}}}{R - \left(\frac{1 - R \times P}{1 - P}\right)^{\frac{1}{N_p}}} = \frac{1 - \left(\frac{1 - 12,516 \times 0,07}{1 - 0,07}\right)^{\frac{1}{2}}}{12,48 - \left(\frac{1 - 12,516 \times 0,07}{1 - 0,07}\right)^{\frac{1}{2}}} = 0,052$$

$$F = \frac{\sqrt{R^2 + 1} \times Ln\left(\frac{1 - X}{1 - RX}\right)}{(R - 1) \times Ln\left(\frac{2 - X \times \left(R + 1 - \sqrt{R^2 + 1}\right)}{2 - X \times \left(R + 1 + \sqrt{R^2 + 1}\right)}\right)}$$

$$F = \frac{\sqrt{12,516^2 + 1} \times Ln\left(\frac{1 - 0,052}{1 - 12,516 \times 0,052}\right)}{(12,516 - 1) \times Ln\left(\frac{2 - 0,052 \times \left(12,516 + 1 - \sqrt{12,516^2 + 1}\right)}{2 - 0,052 \times \left(12,516 + 1 + \sqrt{12,516^2 + 1}\right)}\right)} = 0,983$$

Finalmente

$$Q_D = U \times A \times F \times \Delta TML = 21,33 \left(\frac{Btu}{h \times ft^2 \times {}^{\circ}F} \right) \times 289 ft^2 \times 0,983 \times 60,31 {}^{\circ}F = 365551,55 \frac{Btu}{h}$$

Paso 9: Comparar el resultado del calor de diseño con el calor del proceso.

Verificar:

- Si $|Q_D| |Q_P| = 0$, entonces la temperatura supuesta de la salida del fluido de procesos, representa la verdadera temperatura a la cual sale el intercambiador (cuando está limpio).
- Si $|Q_D| |Q_P| \neq 0$, entonces se debe suponer otra T_{sp} , se debe repetir los pasos desde el 1 al 9.

En este caso se cumple la condición $|Q_D| - |Q_P| = 0$, que significa que la temperatura supuesta de salida del fluido de procesos ajusta perfectamente al balance térmico del equipo.

CÁLCULO DE LA CAÍDA DE PRESIÓN.

CAÍDA DE PRESIÓN LADO CARCASA.

$$\Delta P_{C} = \left(\frac{4 \times f \times G_{C}^{2} \left(\frac{lb}{h \times ft^{2}}\right) \times D_{C}(ft)}{2 \times g\left(\frac{ft}{h^{2}}\right) \times \rho_{c}\left(\frac{lb}{ft^{3}}\right) \times D_{e}(ft)}\right) \times \frac{1ft^{2}}{144in^{2}}$$

$$G_{C} = \frac{\frac{M_{p}}{A_{fC}}}{A_{fC}} = \frac{20 \frac{bbl}{\min} \times 297,316 \frac{lb}{bbl} \times 60 \frac{\min}{h}}{D_{C}(in) \times \frac{C'(in) \times B(in)}{P_{T}(in)} \times \frac{1ft^{2}}{144in^{2}}} = \frac{5809,24 \frac{lb}{h}}{12,09in \times \frac{0,202in \times 3,75in}{0,952in} \times \frac{1ft^{2}}{144in^{2}}} = 86958,125 \frac{lb}{h \times ft^{2}}$$

$$\rho_C = 297,316 \frac{bl}{bbl} \times \frac{1bbl}{5.61458 \, ft^3} = 52,95 \frac{bl}{ft^3}$$

$$f = 1,756 \times \text{Re}^{-0,192} = 1,756 \times (409)^{-0,192} = 0,553$$

Entonces

$$\Delta P_{C} = \left(\frac{4 \times 0,553 \times \left(86958,125 \frac{lb}{h \times ft^{2}}\right)^{2} \times 12,09 in \times \frac{1 ft}{12 in} \times \left(45+1\right)}{2 \times \left(4,18 \times 10^{+8} \frac{ft}{h^{2}}\right) \times 52,95 \frac{lb}{ft^{3}} \times 0,583 in}\right) \times \frac{1 ft^{2}}{144 in^{2}} = 0,209 \, psi$$

CAÍDA DE PRESIÓN LADO TUBO.

$$\Delta P_{T} = \left(\frac{4 \times f \times \left(G_{T}\left(\frac{lb}{h \times ft^{2}}\right)\right)^{2} \times N_{P} \times L_{T}(ft)}{2 \times g\left(\frac{ft}{h^{2}}\right) \times \rho_{T}\left(\frac{lb}{ft^{3}}\right) \times D_{e}(ft)}\right) \times \frac{1ft^{2}}{144in^{2}}$$

$$G_{T} = \frac{\frac{\bullet}{M_{a}}}{A_{fT}} = \frac{34949,017 \frac{lb}{h}}{\frac{\pi}{4} \times (D_{iT}(in))^{2} \times \frac{1ft^{2}}{144in^{2}} \times \frac{N_{T}}{N_{P}}} = \frac{34949,017 \frac{lb}{h}}{\frac{\pi}{4} \times (0,667in)^{2} \times \frac{94}{2} \times \frac{1ft^{2}}{144in^{2}}} = 306448,88 \frac{lb}{h \times ft^{2}}$$

$$\operatorname{Re} = \frac{D_{iT}(in) \times \frac{1ft}{12in} \times G_T \left(\frac{lb}{h \times ft^2}\right)}{\mu_T \left(\frac{lb}{h \times ft}\right)}$$

$$\mu_T(T_{ma}) = 4,8387 \times \exp(-0.0108 \times 85,04^{\circ} F) = 4,551 \frac{lb}{h \times ft}$$

Re =
$$\frac{12,09in \times \frac{1ft}{12in} \times 306448,888 \frac{lb}{h \times ft^2}}{4,551 \frac{lb}{h \times ft}} = 3743$$

$$f = 0.411 \times (3743)^{-0.252} = 0.052$$

$$\Delta P_T = \left(\frac{4 \times 0,052 \times \left(306448,888 \frac{lb}{h \times ft^3}\right)^2 \times 15,427 ft}{2 \times \left(4,18 \times 10^{+8} \frac{lb}{h^2}\right) \times 62,184 \frac{lb}{ft^3} \times 0,667 in \times \frac{1 ft}{12 in}}\right) \times \frac{1 ft}{12 in} = 1,44 psi$$

$$\Delta P_{ES} = \frac{4 \times N_{P} \times \left(G_{T}\left(\frac{lb}{h \times ft^{2}}\right)\right)^{2}}{2 \times \rho_{T}\left(\frac{lb}{ft^{3}}\right) \times g\left(\frac{ft}{h^{2}}\right)} = \left(\frac{4 \times 2 \times \left(306448,88 \frac{lb}{h \times ft^{2}}\right)^{2}}{2 \times 62,184 \frac{lb}{ft^{3}} \times \left(4,18 \times 10^{+8} \frac{ft}{h^{2}}\right)}\right) \times \frac{1ft^{2}}{144in^{2}} = 0,1psi$$

Entonces la caída de presión lado tubo es $\Delta P_{TT} = \Delta P_T + \Delta P_{ES} = 1,44 \, psi + 0,1 \, psi = 1,54 \, psi$

CÁLCULO DE LA RESISTENCIA DE ENSUCIAMIENTO DEL INTERCAMBIADOR DE CALOR

Para determinar este parámetro, se deben tomar las temperaturas de entrada y salida tanto del fluido frío como del fluido caliente de planta.

LADO CARCASA	LADO TUBO
Tep=230°F	Tea=80°F
$Tsp=228^{\circ}F$	Tsa=96°F
Tmp=229°F	

Densidad a Tmp, (bl/bbl)= 953.473 Calor específico a Tmp, (Btu/lb °F)=4.231

$$\Delta TML = \frac{\left(T_{ep} - T_{ea}\right) - \left(T_{sp} - T_{sa}\right)}{Ln\left(\frac{T_{ep} - T_{ea}}{T}\right)} = \frac{\left(230 - 80\right)^{\circ} F - \left(228 - 96\right)^{\circ} F}{Ln\left(\frac{\left(230 - 80\right)^{\circ} F}{\left(228 - 96\right)^{\circ} F}\right)} = 140,81^{\circ} F$$

PASO 1: se determina ΔTML a partir de las temperaturas tomadas en planta, entonces

PASO 2: se calcula el calor transferido a través del fluido de proceso o del fluido de enfriamiento; en este caso se usará el fluido de procesos.

$$Q_{P} = \stackrel{\bullet}{m}_{p} \times Cp(T_{mp}) \times (T_{ep} - T_{sp}) = 5809,24 \frac{lb}{h} \times 4,231 \frac{Btu}{lb \times {}^{\circ}F} \times (230 - 228)^{\circ}F = 49160,856 \frac{Btu}{h}$$

PASO 3: Se iguala este calor a la ecuación de diseño y se despeja el coeficiente global de transferencia de calor.

$$\begin{aligned} Q_D &= Q_P = U_R \times A \times F \times \Delta TML_R \Rightarrow U_R = \frac{Q_P}{A \times F \times \Delta TML_R} \\ &= \frac{49160,856 \frac{Btu}{h}}{289 ft^2 \times 0,987 \times 140,81^{\circ} F} = 1,208 \frac{Btu}{h \times ft^2 \times {}^{\circ} F} \end{aligned}$$

PASO 4: Se calcula el factor combinado de obstrucción.

$$U_{C} = \frac{1}{\sum R + R_{d}} \text{ y después de cierto tiempo de uso del equipo } U_{R} = \frac{1}{\sum R + R_{dR}}$$

Aplicando la inversa y restando miembro a miembro se tiene que:

$$\frac{1}{U_R} - \frac{1}{U_C} = \sum R + R_{dR} - \sum R - R_d \Rightarrow \frac{U_C - U_R}{U_R \times U_C} = R_{dR} - R_d$$

Si
$$R_{dR}-R_{d}>0$$
 \Longrightarrow $R_{dR}>R_{d}$ \Longrightarrow se debe limpiar el equipo

Si
$$R_{\rm dR} - R_{\rm d} < 0 \Longrightarrow R_{\rm dR} < R_{\rm d} \Longrightarrow$$
 no hace falta limpiar el equipo

$$R_d = \frac{U_C - U_R}{U_C \times U_R} = \frac{21,33 - 1,208}{21,33 \times 1,208} = 0,781 \frac{h \times ft^2 \times {}^{\circ} F}{Btu}$$
 (Depositado después de cierto tiempo de servicio)

Como
$$R_{dR} - R_d > 0 \Longrightarrow R_{dR} > R_d \Longrightarrow$$
 Se debe limpiar el equipo IC-15

ANEXO C

CÁLCULO TIPO PARA DETERMINAR EL FLUJO DE AGUA DE ENTRADA AL INTERCAMBIADOR IC-15, A PARTIR DEL TEOREMA DE BERNOULLI GENERALIZADO.

En la figura C.1 se presenta el tramo de la línea de alimentación del intercambiador IC-10A.



Figura C.1 Tramo de tubería donde se aplicó el teorema de Bernoulli

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2 \times g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2 \times g} + Z_2 + Hf$$

Como la velocidad en el punto 1 es igual en el punto 2, entonces se tiene que:

$$\frac{P_1}{\rho \times g} + Z_1 = \frac{P_2}{\rho \times g} + Z_2 + Hf \Rightarrow \frac{P_1 - P_2}{\rho_a \times g} + Z_1 - Z_2 + Hf = 0 \tag{I}$$

$$Hf = \frac{V^{2}}{2 \times g} \times \left[f_{d_{TUBERIA}} \times \left(\frac{L_{T}}{D_{iT}} \right)_{TUBERIA} + f_{d_{TC}} \times \left[3 \times \left(\frac{L}{D} \right)_{Codo_90^{\circ}} + \left(\frac{L}{D} \right)_{Codo_45^{\circ}} + \left(\frac{L}{D} \right)_{V\acute{a}lvula} \right] \right] \quad (\text{II})$$

$$L_T = 5m$$

 $D_{iT} = 3,068in$ (Diámetro nominal de 3 in, cédula 40)

$$\left(\frac{L_{T}}{D_{iT}}\right)_{TUBERIA} = \left(\frac{5m}{3,068in \times \frac{0,0254m}{1in}}\right) = 64,162$$

$$\left(\frac{L}{D}\right)_{Codo_90^{\circ}} = 30$$

$$\left(\frac{L}{D}\right)_{Codo_45^{\circ}} = 16$$

$$\left(\frac{L}{D}\right)_{V\acute{a}lvula} = 13$$

$$\frac{1}{\sqrt{f_{d_{TC}}}} = -2 \times Log_{10} \left[\frac{0,00015ft}{3,068in} \times \frac{12in}{1ft}}{3,71}\right] \Rightarrow f_{d_{TC}} = 0,0173$$

$$Q(m^3/s) = V(m/s) \times A_T(m^3) \Rightarrow V = \frac{Q}{A_T}$$

$$\pi \times D_{iT}^2 \qquad \pi \times (3,068in)^2 \qquad 7.38801in^2 \times 6,4516 \times 10^{-4}m^2 \qquad 4.767 \times 10^{-3}$$

$$A_{T} = \frac{\pi \times D_{iT}^{2}}{4} = \frac{\pi \times (3,068in)^{2}}{4} = 7,38891in^{2} \times \frac{6,4516 \times 10^{-4}m^{2}}{1in^{2}} = 4,767 \times 10^{-3}m^{2}$$

Sustituyendo en la expresión de Hf (ec.II), se tiene que:

$$Hf = \frac{Q^{2}}{2 \times 9.8 \frac{m}{s^{2}} \times (A_{T})^{2}} \times \left[64,162 \times f_{d_{TUBERIA}} + 0,0173 \times \left[3 \times 30 + 16 + 13\right]\right]$$

$$Hf = \frac{Q^{2}}{2 \times 9.8 \frac{m}{s^{2}} \times \left(4,767 \times 10^{-3} m^{2}\right)^{2}} \times \left[64,162 \times f_{d_{TUBERIA}} + 2,0694\right]$$

$$Hf = 2245,193 \times Q^{2} \times \left[64,162 \times f_{d_{TUBERIA}} + 2,0694\right]$$

$$\frac{P_{1} - P_{2}}{\rho \times g} = \frac{\left(18,5 - 14\right)psi}{1000 \frac{Kg}{m^{3}} \times 9.8 \frac{m}{s^{2}}} \times \frac{101325Pa}{14,7 psi} = 3,165m$$

Sustituyendo estas dos últimas expresiones en la ecuación (I), y sabiendo que $\Delta Z = 3,305m$, se tiene que:

$$2245,193 \times Q^{2} \times \left[64,162 \times f_{d_{TURFRIA}} + 2,0694\right] - 3.165m + 3,305m = 0$$
 (III)

Para determinar el caudal se debe seguir con el siguiente procedimiento:

PASO 1: Suponer un $Q(m^3/s)$

PASO 2: Calcular la velocidad con
$$V(\frac{m}{s}) = \frac{Q(\frac{m^3}{s})}{A_T(m^2)}$$

PASO 3: Calcular el número de Reynolds

$$Re = \frac{\rho(\frac{Kg}{m^{3}}) \times V(\frac{m}{s}) \times D_{iT}(m)}{\mu_{a}(\frac{kg}{m \times s})} = \frac{1000(\frac{Kg}{m^{3}}) \times V(\frac{m}{s}) \times 3,068in \times \frac{0,0254m}{1in}}{8,6 \times 10^{-4}(\frac{Kg}{m \times s})}$$

PASO 4: Calcular f_d , con la siguiente expresión:

$$\frac{1}{\sqrt{f_d}} = -2 \times Log_{10} \left[\frac{\varepsilon/D}{3,71} + \frac{2,51}{\text{Rex }\sqrt{f_d}} \right]$$

PASO 5: Verificar:

- Si la ecuación III se cumple entonces el Q supuesto es el caudal que circula por el sistema.
- Si no se cumple la igualdad de la ecuación III, se debe suponer otro caudal y repetir los pasos desde el 2 hasta el 5.

En este caso se tiene que
$$Q(\frac{m^3}{s}) = 4,402 \times 10^{-3} = 69,789 \approx 70 GPM$$

ANEXO D: HOJA TEMA DE LOS INTERCAMBIADORES ESTUDIADOS.

Tabla N° D.1 Hoja tema del intercambiador IC-15

	na N D.1 Hoja	Hoja de	e Especifica	ción de	l Intercam	biado	r	
1	Company:PDVSA-SAN	ROQUE						
2	Location:SANTA ANA							
	Service of Unit: Enfria	dor Reciduo vac	ío+Gasoil Our R	eference: N	10 APLICA			
_	Item No.: IC-15		Your Reference:					
5	Date: 25/04/20	108 Rev No	o.: 5 Job N	lo.: PASAN	TE			
6	Tamaño 12-18		in Tipo	AEM h	or Conecta	do en	1 Paralelo	1 Serie
7	Area/Unid(ef)	282	ft2 asas/uni	dad 1	Area	a/Carc.(ef) 282	ft2
8			Cumpl	imiento u	na unidad			
9	Localización fluido			L	.ado Carcasa		Lado	Tubos
10	Nombre de fluido			RESCIE)UO VACIO+0	GASO	A6	GUA
11	Cantidad total de fluido		lb/h		5809		34	949
12	Vapor (Ent/Sal)		lb/h					
13	Líquido		lb/h	5809	58	809	34949	34949
14	Nocondensable		lb/h					
15	T . (5.10.8)							04.00
	Temperatura (Ent/Sal)	.,	F	230	88	,99	80	91,68
17	Punto cond/evapora	acion	F	F1 71		700	60.007	60,000
_	Densidad Vicessidad		lb/ft3	51,74		.702	62,297	62,206
	Viscosidad Peso molecular, Vap		ср	2,886	4.	.11	0,863	0,748
	Peso molecular, NC							
22	Calor específico		BTU/(lb*F)	0,520	3 04	933	1,001	1.0006
23	Conductividad térmica		BTU/(ft*h*F)	0,052		054	0,348	0,353
24			BTU/Ib	0,002	. 0,	307	0,040	0,000
	Presión		psi	20			30	
	Velocidad		ft/s		0,22			,58
	Caída de Presión, perm	/calc	psi	8		179	10	0,422
	Resistencia ensuciamie		ft2*h*F/BTU					
29	Calor intercambiado	408073	BTU/h		MTD correg	ido	36,23	F
_	Coeficiente	39,88	Sucio	39,84	Lir	npio 39,8		BTU/(h*ft2*F)
31		Constr	rucción de car	casa		- 1	Dil	bujo
						$\overline{}$		
32	D 1/ D1 # 1D 1		Lado		Lado Tut			
33	Presión Diseño/Prueba		75/	/Códig	75/	oos /Código		
33 34	Temperatura de Diseño		75/ 290		75/ 160		m ^{FT} m	
33 34 35	Temperatura de Diseño Número de pasos en	F	75/ 290 1		75/ 160 2	/Código		
33 34 35 36	Temperatura de Diseño Número de pasos en Espesor de corrosión	F in	75/ 290 1 0,0625	/Códig	75/ 160 2 0,0625	/Código		
33 34 35 36 37	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones	in Adentro	75/ 290 1 0,0625 2/150	/Códigi	75/ 160 2 0,0625 3/15	/Código 5 0 ANSI		
33 34 35 36 37 38	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr.	in Adentro Afuera	75/ 290 1 0,0625 2/150 2/150	/Códigi / Códigi) ANSI	75/ 160 2 0,0625 3/15 3/15	/Código 5 0 ANSI 0 ANSI		
33 34 35 36 37 38 39	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/	in Adentro Afuera Intermedio	75/ 290 1 0,0625 2/15(2/15(/150	/Códigi /Códigi DANSI DANSI DANSI	75/ 160 2 0,062! 3/15 3/15 /15	/Código 5 0 ANSI 0 ANSI 0 ANSI	ft razado 0	
33 34 35 36 37 38 39	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94	in Adentro Afuera	75/ 290 1 0,0625 2/150 2/150 /150 5prdMed 0,06	/Códigi /Códigi DANSI DANSI DANSI	75/ 160 2 0,0625 3/15 3/15	/Código 5 0 ANSI 0 ANSI 0 ANSI	ftirazado 0,	
33 34 35 36 37 38 39 40 41	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de	Adentro Afuera Intermedio OD 0,75	75/ 290 1 0,0625 2/150 2/150 /150 5prdMed 0,06	/Código DANSI DANSI DANSI DANSI DANSI 5 interial CS	75/ 160 2 0,062! 3/15 3/15 /15	/Código 5 0 ANSI 0 ANSI 0 ANSI	ff razado 0,	9375 in
33 34 35 36 37 38 39 40 41 42	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94	Adentro Afuera Intermedio OD 0,75	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06	/Código /Código DANSI DANSI DANSI DANSI 5 interial CS	75/ 160 2 0,0629 3/15 3/15 /15 Longitud 15,	/Código 5 0 ANSI 0 ANSI 0 ANSI		9375 in
33 34 35 36 37 38 39 40 41 42 43	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS	Adentro Afuera Intermedio OD 0,75 DI 12,09 [CS	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06	/Código DANSI DANSI DANSI DANSI 5 interial CS Cubi	75/ 160 2 0,0629 3/15 3/15 /15 nongitud 15,	/Código 5 0 ANSI 0 ANSI 0 ANSI 427		9375 in
33 34 35 36 37 38 39 40 41 42 43 44	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet	Adentro Afuera Intermedio OD 0,75 DI 12,09 [CS rCS	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06	/Código DANSI DANSI DANSI DANSI CANSI Cubi Cubi	75/ 160 2 0,0625 3/15 3/15 /15 nongitud 15, erta carcasa erta carcasa	/Código 5 0 ANSI 0 ANSI 0 ANSI 427		9375 in
33 34 35 36 37 38 39 40 41 42 43 44 45	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona	in Adentro Afuera Intermedio OD 0,75 DI 12,09 CS or CS	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06	/Códige DANSI DANSI DANSI DANSI CANSI Cubi Cubi Cabi	75/ 160 2 0,0625 3/15 3/15 /15 n.ongitud 15, erta carcasa erta canal ezal flotante	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS	Trazado	9375 in 30
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long	in Adentro Afuera Intermedio OD 0,75 DI 12,09 CS or CS	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06 M. DE in Tipo Simple Tipo sello	/Códige DANSI DANSI DANSI DANSI CANSI Cubi Cubi Cabi	75/ 160 2 0,0625 3/15 3/15 /15 nongitud 15, erta carcasa erta canal ezal flotante a choque	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS	Trazado	9375 in 30 75 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos	in Adentro Afuera Intermedio OD 0,75 DI 12,09 CS or CS	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06 M. DE in	/Código /ANSI	75/ 160 2 0,0625 3/15 3/15 /15 n.ongitud 15, erta carcasa erta canal ezal flotante a choque tte(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS vert E	Trazado ninguna Espacio: c/c 3,7 Entrada9,2	9375 in 30 75 in 55 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass	in Adentro Afuera Intermedio OD 0,75 DI 12,09 CS or CS	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06 M. DE in Tipo Simple Tipo sello	/Código /ANSI	75/ 160 2 0,0625 3/15 3/15 /15 nongitud 15, erta carcasa erta canal ezal flotante a choque	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS vert E	Trazado ninguna Espacio: c/c 3,7	9375 in 30 75 in 55 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión	Adentro Afuera Intermedio OD 0,75 DI 12,09 CCS arCS	75/ 290 1 0,0625 2/15(2/15(/150) 5prcMed 0,06 M. DE in Tipo Simple Tipo sello Vuelta-U	/Código /Código /ANSI /ANSI /ANSI /ANSI /ANSI /Cubi /C	75/ 160 2 0,0625 3/15 3/15 /15 n.ongitud 15, erta carcasa erta canal ezal flotante a choque tte(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS vert E	ninguna Espacio: c/c 3,7 Entrada9,2 anura/Expander	9375 in 30 75 in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	Adentro Afuera Intermedio OD 0,75 DI 12,09 CCS arCS	75/ 290 1 0,0625 2/150 2/150 /150 5prcMed 0,06 M. DE in Tipo Simple Tipo sello	/Código /ANSI /ANS	75/ 160 2 0,0625 3/15 3/15 /15 n_ongitud 15, etta carcasa erta canal ezal flotante a choque te(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS vert E	Trazado ninguna Espacio: c/c 3,7 Entrada9,2	9375 in 30 75 in 55 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa	Adentro Afuera Intermedio OD 0,75 DI 12,09 CCS rCS rCS	75/ 290 1 0,0625 2/15(2/15(/150) 5prcMed 0,06 M. DE in Tipo Simple Tipo sello Vuelta-U	/Código /Código /ANSI /ANSI /ANSI /ANSI /ANSI /Cubi /C	75/ 160 2 0,0625 3/15 3/15 /15 n_ongitud 15, etta carcasa erta canal ezal flotante a choque te(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS vert E	ninguna Espacio: c/c 3,7 Entrada9,2 anura/Expander	9375 in 30 75 in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 50 51 52 53	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Adentro Afuera Intermedio OD 0,75 DI 12,09 CCS arCS te	75/ 290 1 0,0625 2/15(2/15(/15(5prcMed 0,06 M. DE in Fipo Simple Tipo sello Vuelta-U Entrada	/Código /ANSI /ANS	75/ 160 2 0,0625 3/15 3/15 /15 n_ongitud 15, etta carcasa erta canal ezal flotante a choque te(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS Vert E Tipo r.	ninguna Espacio: c/c 3,7 Entrada9,2 anura/Expander	9375 in 30 75 in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 55 55 55 55 55	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos	Adentro Afuera Intermedio OD 0,75 DI 12,09 E CS arCS te 106 ASME Co	75/ 290 1 0,0625 2/15(2/15(2/15(0prcMed 0,06 M. DE in Fipo Simple Tipo sello Vuelta-U Entrada	/Código /Código /ANSI /ANSI /ANSI /ANSI / Cubi / Cu	75/ 160 2 0,0625 3/15 3/15 /15 n_ongitud 15, etta carcasa erta canal ezal flotante a choque te(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS Vert F Tipo r. Sa	ninguna Espacio: c/c 3,7 Entrada9,2 anura/Expander	9375 in 30 75 in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI 12,09 CCS arCS te	75/ 290 1 0,0625 2/15(2/15(/15(5prcMed 0,06 M. DE in Fipo Simple Tipo sello Vuelta-U Entrada	/Código /Código /ANSI /ANSI /ANSI /ANSI / Cubi / Cu	75/ 160 2 0,0625 3/15 3/15 /15 n_ongitud 15, etta carcasa erta canal ezal flotante a choque te(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS Vert F Tipo r. Sa	ninguna Espacio: c/c 3,7 Entrada9,2 anura/Expander	9375 in 30 75 in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 55 55 55 56	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI 12,09 E CS arCS te 106 ASME Co	75/ 290 1 0,0625 2/15(2/15(2/15(0prcMed 0,06 M. DE in Fipo Simple Tipo sello Vuelta-U Entrada	/Código /Código /ANSI /ANSI /ANSI /ANSI / Cubi / Cu	75/ 160 2 0,0625 3/15 3/15 /15 n_ongitud 15, etta carcasa erta canal ezal flotante a choque te(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS Vert F Tipo r. Sa	ninguna Espacio: c/c 3,7 Entrada9,2 anura/Expander	9375 in 30 75 in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:94 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa Comentarios	Adentro Afuera Intermedio OD 0,75 DI 12,09 E CS arCS te 106 ASME Co	75/ 290 1 0,0625 2/15(2/15(2/15(0prcMed 0,06 M. DE in Fipo Simple Tipo sello Vuelta-U Entrada	/Código /Código /ANSI /ANSI /ANSI /ANSI / Cubi / Cu	75/ 160 2 0,0625 3/15 3/15 /15 n_ongitud 15, etta carcasa erta canal ezal flotante a choque te(%d) 36	/Código 5 0 ANSI 0 ANSI 0 ANSI 427 CS Vert F Tipo r. Sa	ninguna Espacio: c/c 3,7 Entrada9,2 anura/Expander	9375 in 30 75 in 5 in

Tabla Nº D.2 Hoja tema Intercambiador IC-2A/2B

	J	Hoja de	e Especifica	ción del Int	ercambiado	r	
1	Company:PDVSA-SAN	BOOLIE	-				
2	Location:SANTA ANA						
3	Service of Unit: PLANT	A CRUDO	Our Refere	nce:			
4	Item No.: IC-2A/2B		Your Referen				
5	Date:02/05/2008	Rev No.:	12 Job No.: PA	ASANTE			
_			in Tipo		Conectado en	1 Paralelo	1 Serie
7	Area/Unid(ef)	1492	ft2 asas/uni		Area/Carc.(e		ft2
8) (imiento una u			
9	Localización fluido		İ		Carcasa	Lado	Tubos
10	Nombre de fluido			VAPOR 1	TOPE TA-1		UA
11	Cantidad total de fluido		lb/h		145		055
12	Vapor (Ent/Sal)		lb/h	314	137		
13	Líquido		lb/h	12831	13008	146055	146055
14	Nocondensable		lb/h				
15							
16	Temperatura (Ent/Sal)		F	130	126,28	80	106,51
17	Punto cond/evapor	ación	F	130	146,8		
18	Densidad		lb/ft3	0,231	42,9	62,297	62,05
19	Viscosidad		ср	0,009	0,295	0,863	0,637
20	Peso molecular, Vap			55,3	54,36		
21	Peso molecular, NC						
22	Calor específico		BTU/(lb*F)	0,4352	0,5065	1,001	1,0001
23	Conductividad térmica		BTU/(ft*h*F)	0,011	0,069	0,348	0,359
24	Calor latente		ВТИЛЬ	15416,5	122315,3		
25	Presión		psi	17		50	
26	Velocidad		ft/s	0	,44	2,	92
27	Caída de Presión, perm	i/calc	psi	0,85	0,138	10	2,352
28	Resistencia ensuciamie	ento (min)	ft2*h*F/BTU				
29	Calor intercambiado	3875859	BTU/h	MTI	D corregido	32,26	F
30	Coeficiente	80,52	Sucio	80,59	Limpio 80,		BTU/(h*ft2*F)
31		Consti	rucción de car			Dil	oujo
32			1		ado Tubos III		
			Lado		_ado Tubos		
33	Presión Diseño/Prueba		75/	/Códigi 75	i/ /Código		
33 34	Temperatura de Diseño		75/ , 190		i/ /Código 170	пД л	
33 34 35	Temperatura de Diseño Número de pasos en) F	75/ 190 1		i/ /Código 170 4		
33 34 35 36	Temperatura de Diseño Número de pasos en Espesor de corrosión) F	75/ 190 1 0,0625	/Códigi 75	i/ /Código 170 4 0,0625		
33 34 35 36 37	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones	in Adentro	75/ 190 1 0,0625 3/150	/Códig 75	i/ /Código 170 4 0,0625 6/150 ANSI		
33 34 35 36 37 38	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr.	in Adentro Afuera	75/ 190 190 1 0,0625 3/150 1/150	/Códig 75 DANSI DANSI	i/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI		
33 34 35 36 37 38 39	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/	in Adentro Afuera Intermedio	75/ 190 1 0,0625 3/150 1/150 /150	/Códigi 75	5/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI		
33 34 35 36 37 38 39 40	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480	in Adentro Afuera	75/ 190 190 1 1 1 0,0625 3/150 1/150 /150 5prcMed 0,08	/Códigi 75	i/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI	ftirazado 1	in
33 34 35 36 37 38 39 40 41	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de	Adentro Afuera Intermedio OD 0,75	75/ 190 190 1 1 0,0625 3/150 1/150 /150 5prcMed 0,08	/Códigi 75	5/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16	ftirazado 1	in 30
33 34 35 36 37 38 39 40 41 42	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS	Adentro Afuera Intermedio OD 0,75	75/ 190 190 1 1 1 0,0625 3/150 1/150 /150 5prcMed 0,08	/Códigi 75 DANSI DANSI DANSI SinLong aterial CS Cubierta c	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16	Trazado	
33 34 35 36 37 38 39 40 41 42 43	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet	Adentro Afuera Intermedio OD 0,75 DI CS	75/ 190 190 1 1 0,0625 3/150 1/150 /150 5prcMed 0,08	/Códigi 75 DANSI DANSI DANSI SinLong aterial CS Cubierta c	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16	Trazado	
33 34 35 36 37 38 39 40 41 42 43 44	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona	Adentro Afuera Intermedio OD 0,75 DI CS arCS	75/ 190 190 1 1 0,0625 3/150 1/150 /150 5prcMed 0,08	/Códigi 75 DANSI DANSI DANSI Sinuong aterial CS Cubierta of Cubierta of Cabezal fl	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16	Trazado	30
33 34 35 36 37 38 39 40 41 42 43 44 45	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani	Adentro Afuera Intermedio OD 0,75 DI [CS arCS te	75/ 190 1 1 0,0625 3/150 1/150 /150 5prcMed 0,08 Ma DE 27,75 in	/Códigi 75 DANSI DANSI DANSI Sinuong aterial CS Cubierta of Cubierta of Cabezal fl	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS otante	Trazado placa sobre e	30 I haz
33 34 35 36 37 38 39 40 41 42 43 44 45 46	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS	Adentro Afuera Intermedio OD 0,75 DI [CS arCS te	75/ 190 1 0,0625 3/150 1/150 /150 5prcMed 0,08 Ma DE 27,75 in	/Códigi 75 DANSI DANSI DANSI Sinuong aterial CS Cubierta of Cubierta of Cabezal fl	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS otante	Trazado placa sobre e Espacio: c/c 24	30 I haz in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long	Adentro Afuera Intermedio OD 0,75 DI [CS arCS te	75/ 190 1 0,0625 3/150 1/150 2prcMed 0,08 Ma DE 27,75 in	/Códigi 75 DANSI DANSI DANSI Sinuong aterial CS Cubierta of Cubierta of Cabezal fl	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque	Trazado placa sobre e	30 I haz in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos	Adentro Afuera Intermedio OD 0,75 DI [CS arCS te	75/ 190 1 0,0625 3/150 1/150 /150 5prcMed 0,08 Ma DE 27,75 in	/Códigi 75 ANSI ANSI ANSI Cubierta d Cubierta d Cubierta d Cubezal fil Placa cho Corte(%d	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS otante oque d) 21 vert	Trazado placa sobre e Espacio: c/c 24 Entrada24,	30 I haz in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass	Adentro Afuera Intermedio OD 0,75 DI [CS arCS te	75/ 190 1 0,0625 3/150 1/150 2prcMed 0,08 Ma DE 27,75 in	/Códigi 75 ANSI ANSI ANSI Cubierta d Cubierta d Cubezal fl Placa cho Corte(%c	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS otante oque d) 21 vert	Trazado placa sobre e Espacio: c/c 24	30 I haz in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión	Adentro Afuera Intermedio OD 0,75 DI CS ar CS te	75/ 190 190 1 1 0,0625 3/150 1/150 5prcMed 0,08 Ma DE 27,75 in Tipo Simple Tipo sello Vuelta-U	/Códigi 75 JANSI JANSI JANSI JANSI JANSI Cubierta con Cubierta con Cabezal fl Placa cho Corte(%con Junta tubos-p	5/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert	placa sobre e Espacio: c/c 24 Entrada24, anura/Expander	30 I haz in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 88 95 51	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	Adentro Afuera Intermedio OD 0,75 DI CS ar CS te	75/ 190 1 0,0625 3/150 1/150 2prcMed 0,08 Ma DE 27,75 in	/Códigi 75 JANSI JANSI JANSI JANSI JANSI Cubierta co Cubierta co Cabezal fi Placa che Corte(%co Junta tubos-p Tipo	5/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert	Trazado placa sobre e Espacio: c/c 24 Entrada24,	30 I haz in
33 34 35 36 37 38 39 49 41 42 43 44 45 46 47 48 49 50 51 52	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa	Adentro Afuera Intermedio OD 0,75 DI CS arCS te	75/ 190 190 1 1 0,0625 3/150 1/150 5prcMed 0,08 Ma DE 27,75 in Tipo Simple Tipo sello Vuelta-U	/Códigi 75 JANSI JANSI JANSI JANSI JANSI Cubierta con Cubierta con Cabezal fl Placa cho Corte(%con Junta tubos-p	5/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert	placa sobre e Espacio: c/c 24 Entrada24, anura/Expander	30 I haz in 5 in
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 88 95 57 52 53	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Adentro Afuera Intermedio OD 0,75 DI CS ar CS te	75/ 190 190 1 1 0,0625 3/150 1/150 5prcMed 0,08 Mx DE 27,75 in Tipo Simple Tipo sello Vuelta-U	/Códigi 75 JANSI JANSI JANSI JANSI Cubierta de Cubierta de Cabezal fil Placa che Corte(% de Cabezal fil Placa che Cabeza	5/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert	placa sobre e Espacio: c/c 24 Entrada24, ranura/Expander	30 I haz in 5 in
33 4 55 66 7 88 89 40 41 42 43 44 45 46 47 48 49 65 65 65 65 65 65 65 65 65 65 65 65 65	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa	Adentro Afuera Intermedio OD 0,75 DI CS ar CS te a 1015 ASME Co	75/ 190 190 1,00625 3/150 1/150 /150 5prcMed 0,08 Mic DE 27,75 in Tipo Simple Tipo sello Vuelta-U Entrada	/Códigi 75 JANSI JANSI JANSI JANSI Cubierta de Cubierta de Cabezal fil Placa che Corte(% de Cabezal fil Placa che Cabeza	5/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert Tipo laca	placa sobre e Espacio: c/c 24 Entrada24, ranura/Expander	30 I haz in 5 in
33 4 55 56 57 58 59 49 41 42 43 44 45 46 47 48 49 56 56 56 56 56 56 56 56 56 56 56 56 56	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI CS ar CS te 1015 ASME Co	75/ 190 190 10,00625 3/150 1/150 /150 5prcMed 0,08 Mic DE 27,75 in Tipo Simple Tipo sello Vuelta-U Entrada	/Códigi 75 JANSI	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert Tipo llaca Sa	placa sobre e Espacio: c/c 24 Entrada24, ranura/Expander	30 haz in 5 in lb/(ft*s2)
33 34 55 56 37 38 39 49 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI CS arCS te A 1015 nte ASME Co 8382,8 EMA OBTENID.	75/ 190 190 1 0,0625 3/150 1/150 /150 5prcMed 0,08 Ma DE 27,75 in Tipo Simple Tipo sello Vuelta-U Entrada 5diao Sec VIII Div. Lleno de agua A DE RECALCUL	/Códigi 75 JANSI	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert Tipo llaca Sa	placa sobre e Espacio: c/c 24 Entrada24, ranura/Expander	30 haz in 5 in lb/(ft*s2)
33 34 55 56 57 88 89 89 84 14 24 34 44 45 46 47 88 99 50 50 50 50 50 50 50 50 50 50 50 50 50	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos480 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa Comentarios HOJA 1 APROXIMACION DEL	Adentro Afuera Intermedio OD 0,75 DI CS arCS te ASME Co 8382,8 EMA OBTENID. 98.7% DEL ORIO	75/ 190 190 1 0,0625 3/150 1/150 /150 5prcMed 0,08 Ma DE 27,75 in Tipo Simple Tipo sello Vuelta-U Entrada 5diao Sec VIII Div. Lleno de agua A DE RECALCUL GINAL	/Códigi 75 OANSI	6/ /Código 170 4 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI itud 16 carcasa canal CS lotante oque d) 21 vert Tipo llaca Sa	placa sobre e Espacio: c/c 24 Entrada24, ranura/Expander	30 haz in 5 in lb/(ft*s2)

Tabla Nº D.3 Hoja Tema Intercambiador IC-10

	Hoja de Especificación del Intercambiador							
1	Company:PDVSA-SAN							
2	Location: SANTA ANA	NUQUE						
	Service of Unit: Endria	dor do Doot liv	Our Pafaranas: I	NO ADLI	CA			
_	Item No.: IC-1		Your Reference:					
	Date: 25/04/2008	Rev No.: !		.: PASAN				
$\overline{}$	Tamaño 1518			<u> rasar</u> AEM		Conectado en	1 Paralelo	1 Serie
_	Area/Unid(ef)		ft2 asas/uni		rioi c	Area/Carc.(el		ft2
8		432		imiento	una ur) 432	ILZ
	Localización fluido		Campi	IIIICIRO		Carcasa	Lado	Tubos
10				DE		O LIVIANO		GUA .
11	Cantidad total de fluido		lb/h			011		850
12	Vapor (Ent/Sal)		lb/h					
13			lb/h	59	11	5911	71850	71850
14	<u> </u>		lb/h					
15								
16	Temperatura (Ent/Sal)		F	140	0,7	81,99	80	82,23
17	Punto cond/evapora	ación	F					
_	Densidad		lb/ft3	53,	,26	53,26	62,297	62,282
_	Viscosidad		ср	5,5	573	5,573	0,863	0,839
_	Peso molecular, Vap							
21	Peso molecular, NC							
22	Calor específico		BTU/(lb*F)	0,46		0,4604	1,001	1,0009
23	Conductividad térmica		BTU/(ft*h*F)	0,0)58	0,058	0,348	0,349
24			ВТИЛЬ	20				
25	Presión		psi	20			25	
	Velocidad	JI_	ft/s			17		,04
	Caída de Presión, perm		psi ft2*h*F/BTU	8	5	0,215	10	0,657
29	Resistencia ensuciamie Calor intercambiado	nto (min) 159731	BTU/h		МТГ) corregido	13,85	Е.
30		25,52	Sucio	34,63	IVIIL	Limpio 34,		BTU/(h*ft2*F)
31	Coelicierite		rucción de car			Limpio 34,		bujo
32		Control	Lado	0000	<u> </u>	ado Tubos		Dajo
-	Presión Diseño/Prueba	psi		/Códig	75			
-	Temperatura de Diseño		210			150		_
35						2	▎ <u></u> ▗╓ ┸ ╓╃╌┈	
	Número de pasos en		1				╙┅╙┈┅	— <u>∩∸</u> ₩ I
36	Número de pasos en Espesor de corrosión	in	0,0625			0,0625		- 1
-			0,0625 2/15	0 ANSI		0,0625 4/150 ANSI		-
36 37 38	Espesor de corrosión Conecciones Tamaño/Compr.	in Adentro Afuera	0,0625 2/15 2/15	0 ANSI 0 ANSI		4/150 ANSI 4/150 ANSI	- <u>u</u> - <u>u</u>	-
36 37 38 39	Espesor de corrosión Conecciones Tamaño/Compr. in/	in Adentro Afuera Intermedio	0,0625 2/15 2/15	0 ANSI		4/150 ANSI	<u>-n- u</u>	_
36 37 38 39	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150	in Adentro Afuera	0,0625 2/15 2/15 /15 prcMed 0,06	0 ANSI 0 ANSI 0 ANSI 35		4/150 ANSI 4/150 ANSI	ft razado 0	
36 37 38 39 40 41	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de	Adentro Afuera Intermedio OD 0,75	0,0625 2/15 2/15 /15 /15 5prcMed 0,06	0 ANSI 0 ANSI 0 ANSI 55 aterial 0	CS	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708	ft razado 0	,9375 in 30
36 37 38 39 40 41 42	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS	Adentro Afuera Intermedio OD 0,75 DI 15,025	0,0625 2/15 2/15 /15 prcMed 0,06	0 ANSI 0 ANSI 0 ANSI 35 aterial C	CS ubierta c	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708		
36 37 38 39 40 41 42 43	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet	Adentro Afuera Intermedio OD 0,75 DI 15,025 C	0,0625 2/15 2/15 /15 /15 5prcMed 0,06	0 ANSI 0 ANSI 0 ANSI 35 aterial C C	CS ubierta c ubierta c	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 arcasa		
36 37 38 39 40 41 42 43 44	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona	Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS arCS	0,0625 2/15 2/15 /15 /15 5prcMed 0,06	O ANSI O ANSI O ANSI S S aterial C C C	CS ubierta c ubierta c abezal fl	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 arcasa anal CS otante	Trazado	
36 37 38 39 40 41 42 43 44 45	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant	in Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS arCS te	0,0625 2/15 2/15 /15 	O ANSI O ANSI O ANSI SS aterial Co Co Co	CS ubierta c ubierta c abezal fl laca cho	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 arcasa anal CS otante	Trazado	30
36 37 38 39 40 41 42 43 44 45 46	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS	in Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS arCS te	0,0625 2/15 2/15 2/15 /15 cprcMed 0,06 M DE in	O ANSI O ANSI O ANSI SS aterial Co Co Co	CS ubierta c ubierta c abezal fl	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 arcasa anal CS otante	ninguna Espacio: c/c 4	30 in
36 37 38 39 40 41 42 43 44 45 46 47	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long	in Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS arCS te	0,0625 2/15 2/15 2/15	0 ANSI 0 ANSI 0 ANSI 35 aterial C C C C	CS ubierta c ubierta c abezal fl laca cho	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 carcasa canal CS otante oque I) 24 hor	Trazado	30 in
36 37 38 39 40 41 42 43 44 45 46 47 48	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos	in Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS arCS te	0,0625 2/15 2/15 2/15 /15 cprcMed 0,06 M DE in	O ANSI O ANSI O ANSI O Exercise Current Curren Current Current Current Current Current Current Current Current	CS ubierta c ubierta c abezal fl laca cho Corte(%c	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 carcasa canal CS otante oque I) 24 hor	Trazado ninguna Espacio: c/c 4 Entrada8,0	30 in 0625 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass	in Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS arCS te	0,0625 2/15 2/15 2/15	O ANSI O ANSI O ANSI O E CI O	CS ubierta c ubierta c abezal fl laca cho	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 carcasa canal CS otante oque I) 24 hor	ninguna Espacio: c/c 4	30 in 0625 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión	Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS ar CS te	0,0625 2/15 2/15 2/15 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U	O ANSI O ANSI O ANSI S S aterial C C C C P Junta	CS ubierta c ubierta c abezal fl laca cho Corte(%c	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 arcasa canal CS otante oque d) 24 hor Tipo	ninguna Espacio: c/c 4 Entrada8,0	30 in 0625 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS ar CS te	0,0625 2/15 2/15 2/15	O ANSI O ANSI O ANSI O Existence O ANSI O Co	CS ubierta c ubierta c iabezal fl laca cho Corte(%c	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 arcasa canal CS otante oque d) 24 hor Tipo	Trazado ninguna Espacio: c/c 4 Entrada8,0	30 in 0625 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa	Adentro Afuera Intermedio OD 0,75 DI 15,025 C CS arCS te	0,0625 2/15 2/15 2/15 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U	O ANSI O ANSI O ANSI O Existence O ANSI O Co	CS ubierta c ubierta c abezal fl laca cho Corte(%c	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 arcasa canal CS otante oque d) 24 hor Tipo	ninguna Espacio: c/c 4 Entrada8,0	30 in 0625 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	Adentro Afuera Intermedio OD 0,75 DI 15,025 CS ar CS te	0,0625 2/15 2/15 2/15 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U	O ANSI O ANSI O ANSI O ANSI O Co	CS ubierta c ubierta c iabezal fl laca cho Corte(%c	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 sarcasa sanal CS otante ique d) 24 hor Tipo laca	ninguna Espacio: c/c 4 Entrada8,0	30 in 0625 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Adentro Afuera Intermedio OD 0,75 DI 15,025 CS ar CS te	0,0625 2/15 2/15 /15 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U	O ANSI O ANSI O ANSI O ANSI O Co	CS ubierta c ubierta c abezal fl laca cho Corte(%c tubos-p	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 sarcasa sanal CS otante ique d) 24 hor Tipo laca Clase	ninguna Espacio: c/c 4 Entrada8,0 anura/Expande	30 in 0625 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Adentro Afuera Intermedio OD 0,75 DI 15,025 E CS ar CS te 106 ASME Co	0,0625 2/15 2/15 1/15 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	O ANSI O ANSI O ANSI O ANSI O Co	CS ubierta c ubierta c abezal fl laca cho Corte(%c tubos-p	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 sarcasa sanal CS otante ique d) 24 hor Tipo laca Clase	ninguna Espacio: c/c 4 Entrada8,0 anura/Expander	30 in 0625 in (lb/(ft*s2)
36 37 38 39 49 41 42 43 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa Comentarios	Adentro Afuera Intermedio OD 0,75 DI 15,025 E CS ar CS te 106 ASME Co	0,0625 2/15 2/15 1/15 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	O ANSI O ANSI O ANSI O ANSI O Co	CS ubierta c ubierta c abezal fl laca cho Corte(%c tubos-p	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 sarcasa sanal CS otante ique d) 24 hor Tipo laca Clase	ninguna Espacio: c/c 4 Entrada8,0 anura/Expander	30 in 0625 in (lb/(ft*s2)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 55 56	Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos150 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa Comentarios	Adentro Afuera Intermedio OD 0,75 DI 15,025 E CS ar CS te 106 ASME Co	0,0625 2/15 2/15 1/15 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	O ANSI O ANSI O ANSI O ANSI O Co	CS ubierta c ubierta c abezal fl laca cho Corte(%c tubos-p	4/150 ANSI 4/150 ANSI /150 ANSI itud 15,4708 sarcasa sanal CS otante ique d) 24 hor Tipo laca Clase	ninguna Espacio: c/c 4 Entrada8,0 anura/Expander	30 in 0625 in (lb/(ft*s2)

Tabla Nº D.4 Hoja tema intercambiador IC-10A

		Hoja de	e Especifica	ción del In	tercambiado	r	
1	Company:PDVSA-SAN	ROQUE					
2	Location:SANTA ANA	•					
3	Service of Unit: Enfriad	or de Dest, Liv.	Our Reference:	NO APLICA			
4	Item No.: IC-10A		Your Reference				
5	Date: 25/04/2008	Rev No	o.: 2 Job N	lo.: PASANTE			
\blacksquare			in Tipo		Conectado en	1 Paralelo	1 Serie
7	Area/Unid(ef)		ft2 asas/uni		Area/Carc.(e		
8				imiento una (.,	
9	Localización fluido				Carcasa	Lado	Tubos
10	Nombre de fluido				ADO LIVIANO		GUA
11	Cantidad total de fluido		lb/h		5780		4322
12	Vapor (Ent/Sal)		lb/h		1		1
13	Líquido		lb/h	5780	5780	164322	164322
14	Nocondensable		lb/h	0.00	5.55	101022	101022
15	recordorioable		15111				
16	Temperatura (Ent/Sal)		F	308	111,45	80	83,59
17	Punto cond/evapora	ación	F		,.0		22,23
18	Densidad		lb/ft3	49,502	52,124	62,297	62,267
19	Viscosidad		Ср	1,283	3,901	0,863	0,826
20	Peso molecular, Vap		Эр	.,200	5,55.	-,,,,,,	2,320
21	Peso molecular, NC						
22	Calor específico		BTU/(lb*F)	0,566	0,4931	1,001	1,0009
23	Conductividad térmica		BTU/(ft*h*F)	0,051	0,056	0,348	0,35
24	Calor latente		BTU/lb	0,00.	0,000	0,0.10	0,00
25	Presión		psi	20		25	
-	Velocidad		ft/s		0,42		1,85
		/calc	psi	8	0.65	10	39,499
-	Resistencia ensuciamie		ft2*h*F/BTU		0,00		55,155
	Calor intercambiado	589731	BTU/h	M ⁻	TD corregido	96,72	F
30	Coeficiente	63,42	Sucio	63,37	Limpio 63,		BTU/(h*ft2*F)
31			rucción de car		•		ibujo
32							
			Lado		Lado Tubos	l	
33	Presión Diseño/Prueba	psi		/Códigi 7	<u>Lado Tubos</u> 75/ /Código		
33 34				/Códig 7		_	_
34			75/	/Códigi 7	75/ /Código		
34 35	Temperatura de Diseño		75/ 370		75/ /Código 150		
34 35	Temperatura de Diseño Número de pasos en) F	75/ 370 1 0,0625		75/ /Código 150 2		
34 35 36	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones) F	75/ 370 1 0,0625 2/15		75/ /Código 150 2 0,0625		
34 35 36 37 38 39	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/	in Adentro	75/ 370 1 0,0625 2/15/ 2/15/	DANSI	75/ /Código 150 2 0,0625 6/150 ANSI		
34 35 36 37 38 39	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr.	in Adentro Afuera	75/ 370 1 0,0625 2/15/ 2/15/	DANSI DANSI DANSI	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI		.9375 in
34 35 36 37 38 39 40 41	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:32 Tipo de	Adentro Afuera Intermedio OD 0,75	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06	DANSI DANSI DANSI 5 incor	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 15,4271	<u>.</u>	.9375 in 30
34 35 36 37 38 39 40	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:32 Tipo de	Adentro Afuera Intermedio OD 0,75	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06	DANSI DANSI DANSI 5 incor	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft razado 0	
34 35 36 37 38 39 40 41 42 43	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet	Adentro Afuera Intermedio OD 0,75 DI 8,071	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06	DANSI DANSI DANSI 5 incor	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI gitud 15,4271	ftirazado 0	
34 35 36 37 38 39 40 41 42 43 44	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona	Adentro Afuera Intermedio OD 0,75 DI 8,071 [CS arCS	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06	DANSI DANSI DANSI S incoraterial CS Cubierta Cuberta	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI /150 ANSI 150 ANSI carcasa carcasa carcasa	ft razado 0	
34 35 36 37 38 39 40 41 42 43 44 45	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani	Adentro Afuera Intermedio OD 0,75 DI 8,071 [CS arCS	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M	DANSI DANSI DANSI S in.or aterial CS Cubierta Cubierta Cabezal Placa ch	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 15,4271 carcasa canal CS (flotante hoque	ft razado 0 Trazado ninguna	30
34 35 36 37 38 39 40 41 42 43 44 45 46	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS	75/ 370 1 0,0625 2/15i 2/15i /15i 3prcMed 0,06 M DE in	DANSI DANSI DANSI S in.or aterial CS Cubierta Cubierta Cabezal Placa ch	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI /150 ANSI 150 ANSI carcasa carcasa carcasa	ft razado 0 Trazado ninguna Espacio: c/c 3;	30 25 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello	DANSI DANSI DANSI S in.or aterial CS Cubierta Cubierta Cabezal Placa ch	75/ /Cédigo 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft razado 0 Trazado ninguna	30 25 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS	75/ 370 1 0,0625 2/15i 2/15i /15i 3prcMed 0,06 M DE in	D ANSI D ANSI D ANSI C incoraterial CS Cubierta Cubierta Cabezal Placa ch	75/ /Cédigo 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft razado 0 Trazado ninguna Espacio: c/c 3,	30 25 in 3375 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello	DANSI DANSI DANSI CANSI Cubierta Cubierta Cubierta Cabezal Placa ch Corte(2)	75/ /Cédigo 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft razado 0 Trazado ninguna Espacio: c/c 3,	30 25 in 3375 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión	Adentro Afuera Intermedio OD 0,75 DI 8,071 CCS ar CS	75/ 370 1 0,0625 2/15i 2/15i /15i 0prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U	DANSI DANSI DANSI DANSI Caberta Cubierta Cubierta Cabezal Placa ch Corte(2) Junta tubos	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft razado 0 Trazado ninguna Espacio: c/c 3, Entrada8,9	30 25 in 3375 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubo:32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	Adentro Afuera Intermedio OD 0,75 DI 8,071 CCS ar CS	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello	DANSI DANSI DANSI DANSI CANSI Cubierta Cubierta Cabezal Placa cl Corte(% Junta tubos Tipo haz 5	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI /150 ANSI rigitud 15,4271 carcasa canal CS flotante hoque %d) 22 hor Tipo	ft razado 0 Trazado ninguna Espacio: c/c 3,	30 25 in 3375 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS te	75/ 370 1 0,0625 2/15i 2/15i /15i 0prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U	DANSI DANSI DANSI DANSI Caberta Cubierta Cubierta Cabezal Placa ch Corte(2) Junta tubos	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI /150 ANSI rigitud 15,4271 carcasa canal CS flotante hoque %d) 22 hor Tipo	ft razado 0 Trazado ninguna Espacio: c/c 3, Entrada8,9	30 25 in 3375 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 50 50 50 50 50 50 50 50 50 50 50 50 50	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS te	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	DANSI DANSI DANSI S incoraterial CS Cubierta Cabezal Placa ch Corte(% Junta tubos Tipo haz 5 Lado Tubos	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI Garcasa Carcasa Carcas	ft razado 0 Trazado ininguna Espacio: c/c 3; Entrada8,9 ranura/Expander	30 25 in 3375 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS te 110 ASME Co	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	DANSI DANSI DANSI DANSI S inLoraterial CS Cubierta Cabezal Placa ch Corte(% Junta tubos Tipo haz 5 Lado Tubos	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft'razado 0 Trazado ininguna Espacio: c/c 3; Entrada8,9 ranura/Expander alida haz 4	30 25 in 3375 in r Ib/(ft*s2)
34 35 36 37 38 39 40 41 42 43 44 45 55 55 55 55 55 55 55 55 55 55 55	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS te	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	DANSI DANSI DANSI DANSI S inLoraterial CS Cubierta Cabezal Placa ch Corte(% Junta tubos Tipo haz 5 Lado Tubos	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft razado 0 Trazado ininguna Espacio: c/c 3; Entrada8,9 ranura/Expander	30 25 in 3375 in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS te 110 ASME Co	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	DANSI DANSI DANSI DANSI S inLoraterial CS Cubierta Cabezal Placa ch Corte(% Junta tubos Tipo haz 5 Lado Tubos	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft'razado 0 Trazado ininguna Espacio: c/c 3; Entrada8,9 ranura/Expander alida haz 4	30 25 in 3375 in r Ib/(ft*s2)
34 35 36 37 38 39 40 41 42 43 44 45 55 55 55 55 55 55 55 55 55 55 55	Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos32 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa Comentarios	Adentro Afuera Intermedio OD 0,75 DI 8,071 CS ar CS te 110 ASME Co	75/ 370 1 0,0625 2/15i 2/15i /15i 5prcMed 0,06 M DE in Tipo Simple Tipo sello Vuelta-U Entrada	DANSI DANSI DANSI DANSI S inLoraterial CS Cubierta Cabezal Placa ch Corte(% Junta tubos Tipo haz 5 Lado Tubos	75/ /Código 150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft'razado 0 Trazado ininguna Espacio: c/c 3; Entrada8,9 ranura/Expander alida haz 4	30 25 in 3375 in r Ib/(ft*s2)

Tabla N° D.5 Hoja tema intercambiador IP-7

		Hoja de	e Especifica	ción del	Intercambiado	or	
1	Company: PDVSA-SAN	ROQUE					
2	Location:SANTA ANA						
3	Service of Unit: Enfriad	or de Nafta	Our Reference: N	IO APLICA			
4	Item No.: IP-7	ነ	Your Reference: N	IO APLICA			
5	Date: 27/04/20		o.: 4 Job N	lo.: TESIST.	Α		
6	Tamaño 1224	10	in Tipo		or Conectado en	1 Paralelo	1 Serie
7	Area/Unid(ef)	418	ft2 asas/uni		Area/Carc.(e	ef) 418	ft2
8			Cumpl	imiento un			
9	Localización fluido			L	ado Carcasa	Lado	Tubos
10	Nombre de fluido				NAFTA		GUA
11	Cantidad total de fluido		lb/h		41767	34-	4762
12	Vapor (Ent/Sal)		lb/h				
13	Líquido		lb/h	41767	41767	344762	344762
14	Nocondensable		lb/h				
15							
16	Temperatura (Ent/Sal)		F	125	82,48	79	81,4
17	Punto cond/evapor	ación	F				
18			lb/ft3	47,561		62,303	62,288
19	Viscosidad		ср	0,644	0,865	0,874	0,847
20	Peso molecular, Vap						
21	Peso molecular, NC						4.55
22	Calor específico		BTU/(lb*F)	0,479	0,456	1,0011	1,001
23	Conductividad térmica		BTU/(ft*h*F)	0,067	0,07	0,348	0,349
24	Calor latente		ВТИЛЬ				
25	Presión		psi	50		55	
			ft/s		0,73		3,17
-			psi	10	1,179	10	88,131
-	Resistencia ensuciamie	<u> </u>	ft2*h*F/BTU		LITE 11	11.10	-
_	Calor intercambiado	830224	BTU/h		MTD corregido	14,42	F
* OO!			0 '	407 77	111 1 40	7 77	DITTLE RESPONDED
30	Coeficiente	137,89	Sucio	137,77	Limpio 13	,	BTU/(h*ft2*F)
31	Coeficiente		rucción de car			,	BTU/(h*ft2*F) bujo
31 32		Constr	rucción de car Lado	casa	Lado Tubos	Dil	
31 32 33	Presión Diseño/Prueba	Constr psi	rucción de care Lado 75/		Lado Tubos 75/ /Código	Dil	
31 32 33 34	Presión Diseño/Prueba Temperatura de Diseño	Constr psi	rucción de card Lado 75/ 190	casa	Lado Tubos 75/ /Código 150	Dil	
31 32 33 34 35	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en	Consti psi F	rucción de card Lado 75/ 190	casa	Lado Tubos 75/ /Código 150 3	Dil	
31 32 33 34 35 36	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión	Constr psi F	rucción de card Lado 75/ 190 1 0,0625	/Códigi	Lado Tubos 75/ /Código 150 3 0,0625	Dil	
31 32 33 34 35 36 37	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones	Construction Const	rucción de card Lado 75/ 190 1 0,0625 3/150	/Códigi	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI	Dil	
31 32 33 34 35 36 37 38	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr.	Psi Psi In Adentro Afuera	rucción de card Lado 75/ 190 1 0,0625 3/150 3/150	/Códig: / ANSI	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI	Dil	
31 32 33 34 35 36 37 38 39	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr.	Psi psi F in Adentro Afuera Intermedio	rucción de card Lado 75/ 190 1 1 0,0625 3/150 3/150	/Códigi /Códigi JANSI JANSI JANSI	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI	Dil	bujo
31 32 33 34 35 36 37 38 39 40	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107	Psi Psi In Adentro Afuera	Lado 75/ 190 1 0,0625 3/150 3/150	Casa /Códigi /ANSI	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI	Dil	bujo in
31 32 33 34 35 36 37 38 39 40 41	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107	Construction DSI PSI PSI PSI PSI PSI PSI PSI PSI PSI P	190 Lado 75/ 190 190 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Casa /Códigi DANSI DANSI DANSI DANSI DANSI DANSI DANSI DANSI DANSI	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI	Dil	bujo
31 32 33 34 35 36 37 38 39 40 41 42	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS	Construction psi in Adentro Afuera Intermedio OD 0,75	Lado 75/ 190 1 0,0625 3/150 3/150	Casa /Códigi I ANSI I ANSI I ANSI I ANSI I ANSI I ANSI I Cubie	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI congitud 20 iralty	Dil	bujo in
31 32 33 34 35 36 37 38 39 40 41 42 43	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet	Construction Discontinuation of CS	190 Lado 75/ 190 190 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/Códigi /ANSI /ANSI /ANSI /ANSI /ANSI /AUSi /AUS	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI /iralty erta carcasa erta canal	Dil	bujo in
31 32 33 34 35 36 37 38 39 40 41 42 43 44	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona	Construction psi in Adentro Afuera Intermedio OD 0,75 DI CS	190 Lado 75/ 190 190 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Casa /Códigi IANSI IANSI IANSI ANSI Cubie Cubie Cabe	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI /iso Ans	ft razado 1	bujo in
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani	Construction PSi In Adentro Afuera Intermedio OD 0,75 DI CS In CS	190 1 0,0625 3/150 3/150 5prcMed 0,08 Ms	Casa /Códigi /ANSI /ANSI /ANSI /ANSI /ANSI /AUDICA /AU	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI /iralty eira carcasa erta carcasa erta canal ezal flotante a choque	ft razado 1 Trazado ninguna	in 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS	Construction PSi In Adentro Afuera Intermedio OD 0,75 DI CS In CS	Tipo Simple	Casa /Códigi /ANSI /ANSI /ANSI /ANSI /ANSI /AUDICA /AU	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI /iso Ans	ft razado 1 Trazado ninguna Espacio: c/c 12	in in
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long	Construction PSi In Adentro Afuera Intermedio OD 0,75 DI CS In CS	Tipo Simple Tipo sello	Casa /Códigi /ANSI /ANSI /ANSI /ANSI /ANSI /AUDICA /AU	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI congitud 20 siralty erta carcasa erta canal ezal flotante a choque ere(%d) 22 vert	ft razado 1 Trazado ninguna	in in
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos	Construction PSi In Adentro Afuera Intermedio OD 0,75 DI CS In CS	Tipo Simple	Casa /Códigi /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /AUDie /AU	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI congitud 20 irralty erta carcasa erta canal ezal flotante a choque re(%d) 22 vert	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23,	in 30 in 25 in in
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass	Construction PSi In Adentro Afuera Intermedio OD 0,75 DI CS In CS	Tipo Simple Tipo sello	Casa /Código /ANSI	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI congitud 20 irralty erta carcasa erta canal ezal flotante a choque re(%d) 22 vert	ft razado 1 Trazado ninguna Espacio: c/c 12	in 30 in 25 in in
31 33 34 35 36 37 38 39 4 4 4 45 46 47 8 49 50	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión	Construction psi in Adentro Afuera Intermedio OD 0,75 DI CS CS crCS	Tipo Simple Tipo sello Tudo Tipo Lado 75/ 190 1 0,0625 3/150 /150 2prcMed 0,08 Ma DE 12,75 in	Casa /Código /ANSI ANSI ANSI ANSI Cubie Cubie Cubie Cabe Placa Cort Junta tub	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI congitud 20 irialty erta carcasa erta canal izal flotante a choque ic(%d) 22 vert Tipo	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23,	in 30 in 25 in
31 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 55 55	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotant Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	Construction psi in Adentro Afuera Intermedio OD 0,75 DI CS CS crCS	Tipo Simple Tipo sello	Casa /Códigr /ANSI JANSI JANSI OANSI Cubie C	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI congitud 20 irialty erta carcasa erta canal izal flotante a choque ic(%d) 22 vert Tipo ios-placa	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23,	in 30 in 25 in
31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa	Construction Const	Tipo Simple Tipo sello Tudo Tipo Lado 75/ 190 1 0,0625 3/150 /150 2prcMed 0,08 Ma DE 12,75 in	Casa /Código /ANSI ANSI ANSI ANSI Cubie Cubie Cubie Cabe Placa Cort Junta tub	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI congitud 20 irialty erta carcasa erta canal izal flotante a choque ic(%d) 22 vert Tipo ios-placa	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23,	in 30
31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Construction Const	Lado 75/ 190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in Tipo Simple Tipo sello Vuelta-U	Casa /Códigr /ANSI JANSI JANSI ANSI Cubie Lubie Lu	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI Longitud 20 irialty erta carcasa erta canal ezal flotante a choque re(%d) 22 vert Tipo nos-placa S	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23, ranura/Expander alida haz 16	in 30 in 25 in
31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Construction Const	Lado	Casa /Códigr /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /AUDICA /A	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI congitud 20 irialty erta carcasa erta canal ezal flotante a choque e(%d) 22 vert Tipo pos-placa S	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23, ranura/Expander alida haz 16	in 30 in 25 in
37 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 15 15 15 15 15 15 15 15 15 15 15 15 15	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Construction Psi In Adentro Afuera Intermedio OD 0,75 DI CS ICS ICS ICS ICS ICS ICS ICS ICS ICS I	Lado	Casa /Código /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /AUDICA /A	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI Longitud 20 irialty erta carcasa erta canal ezal flotante a choque te(%d) 22 vert Tipo nos-placa S bos	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23, ranura/Expander alida haz 16 TEMA B az 1579,2	in 30 lb/(ft*s2)
37 33 34 35 36 37 38 39 49 41 42 43 44 45 46 47 48 49 36 15 15 15 15 15 15 15 15 15 15 15 15 15	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Construction Psi in Adentro Afuera Intermedio OD 0,75 DI CS	Lado	Casa /Código /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /AUDICA /A	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI /150 ANSI congitud 20 irialty erta carcasa erta canal ezal flotante a choque e(%d) 22 vert Tipo pos-placa S	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23, ranura/Expander alida haz 16 TEMA B az 1579,2	in 30 lb/(ft*s2)
37 33 34 35 36 37 38 39 49 41 42 43 44 45 46 47 48 49 50 51 52 55 55 56	Presión Diseño/Prueba Temperatura de Diseño Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa Comentarios Esta ho	Construction Psi in Adentro Afuera Intermedio OD 0,75 DI CS	Lado	Casa /Código /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /ANSI /AUDICA /A	Lado Tubos 75/ /Código 150 3 0,0625 8/150 ANSI 8/150 ANSI /150 ANSI Longitud 20 irialty erta carcasa erta canal ezal flotante a choque te(%d) 22 vert Tipo nos-placa S bos	ft razado 1 Trazado ninguna Espacio: c/c 12 Entrada23, ranura/Expander alida haz 16 TEMA B az 1579,2	in 30 lb/(ft*s2)

Tabla Nº D.6 Hoja tema intercambiador IP-7A con dos pasos por los tubos.

		,	, Lopeeinea		ntercambiado	•	
1	Company: PDVSA-SAN						
2	Location:SANTA ANA						
3	Service of Unit: Enfriad	or de Nafta	Our Reference: N	IO APLICA			
4	Item No.: IP-7A		Your Reference:	NO APLICA			
5	Date: 27/04/20	108 - Rev No	o.: 4 Job N	o.: TESISTA			
6	Tamaño 12 24	10	in Tipo	BEM hor	Conectado en	1 Paralelo	1 Serie
7	Area/Unid(ef)	418	ft2 asas/uni	dad 1	Area/Carc.(el	f) 418	ft2
8			Cumpli	imiento una	unidad		
9	Localización fluido			Lad	lo Carcasa	Lado	Tubos
10	Nombre de fluido			1	NAFTA	AG	iUA
11	Cantidad total de fluido		lb/h		41767	111	1346
12	Vapor (Ent/Sal)		lb/h				
13	Líquido		lb/h	41767	41767	111346	111346
14	Nocondensable		lb/h				
15							
16	Temperatura (Ent/Sal)		F	125	85,58	79	85,91
17	Punto cond/evapora	ación	F				
18	Densidad		lb/ft3	47,561	48,538	62,303	62,256
19	Viscosidad		ср	0,644	0,845	0,874	0,801
20	Peso molecular, Vap						
21	Peso molecular, NC						
22	Calor específico		BTU/(lb*F)	0,479	0,4577	1,0011	1,0008
23	Conductividad térmica		BTU/(ft*h*F)	0,067	0,07	0,348	0,351
24	Calor latente		ВТИЛЬ				
25	Presión		psi	50		55	
26	Velocidad		ft/s		0,73	4,	,99
27	Caída de Presión, perm	/calc	psi	10	1,136	10	3,754
28	Resistencia ensuciamie	nto (min)	ft2*h*F/BTU				
29	Calor intercambiado	771177	BTU/h	М	ITD corregido	14,72	F
30	Coeficiente	125,44	Sucio	125,39	Limpio 125	5,39	BTU/(h*ft2*F)
31		Consti	ucción de car	casa	·	Dil	bujo
32			Lado		Lado Tubos		·
33	Presión Diseño/Prueba	psi	75/	/Códigi	707.00		
34			737	Codig:	75/ /Código		
0.5	Temperatura de Diseño		190	i codigi	757 /Coalgo 150	_	_
35				Codigi		(™ ;	
35 36	Número de pasos en			Codigr	150		
-	Número de pasos en	F	190 1		150 2		
36	Número de pasos en Espesor de corrosión	F in	190 1 0,0625) ANSI	150 2 0,0625		
36 37	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr.	in Adentro	190 1 0,0625 3/150 3/150) ANSI	150 2 0,0625 6/150 ANSI	<u>.</u>	
36 37 38 39	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr.	in Adentro Afuera	190 1 0,0625 3/150 3/150) ANSI) ANSI) ANSI	150 2 0,0625 6/150 ANSI 6/150 ANSI	ftirazado 1	in in
36 37 38 39	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/	in Adentro Afuera Intermedio	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08) ANSI) ANSI) ANSI	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI	ft razado 1	in 30
36 37 38 39 40	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107	Adentro Afuera Intermedio OD 0,75	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08	DANSI DANSI DANSI DANSI 3 in.o	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI		
36 37 38 39 40 41	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de	Adentro Afuera Intermedio OD 0,75	190 1 0,0625 3/150 3/150 /150 5-prcMed 0,08	DANSI DANSI DANSI DANSI 3 in.o	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa		
36 37 38 39 40 41 42	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet	Adentro Afuera Intermedio OD 0,75 DI CS	190 1 0,0625 3/150 3/150 /150 5-prcMed 0,08	0 ANSI 0 ANSI 0 ANSI 0 ANSI 3 in.o sterial Admira Cubierta	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa		
36 37 38 39 40 41 42 43	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona	Adentro Afuera Intermedio OD 0,75 DI [CS rCS	190 1 0,0625 3/150 3/150 /150 5-prcMed 0,08	0 ANSI 0 ANSI 0 ANSI 0 ANSI 3 in.o sterial Admira Cubierta	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal		
36 37 38 39 40 41 42 43 44 45	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani	in Adentro Afuera Intermedio OD 0,75 DI CS or CS	190 1 0,0625 3/150 3/150 /150 5-prcMed 0,08	DANSI DANSI DANSI CANSI Cubierta Cubierta Cabeza Placa c	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante	Trazado	
36 37 38 39 40 41 42 43 44 45	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS	in Adentro Afuera Intermedio OD 0,75 DI CS or CS	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in	DANSI DANSI DANSI CANSI Cubierta Cubierta Cabeza Placa c	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante	Trazado	30 in
36 37 38 39 40 41 42 43 44 45 46 47	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS	in Adentro Afuera Intermedio OD 0,75 DI CS or CS	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in	DANSI DANSI DANSI CANSI Cubierta Cubierta Cabeza Placa c	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante	Trazado ninguna Espacio: c/c 12	30 in
36 37 38 39 40 41 42 43 44 45 46 47 48	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long	in Adentro Afuera Intermedio OD 0,75 DI CS or CS	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in	DANSI DANSI DANSI CANSI Cubierta Cubierta Cubierta Cabeza Placa c	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante shoque %d) 22 vert	Trazado ninguna Espacio: c/c 12	30 in
36 37 38 39 40 41 42 43 44 45 46 47 48	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos	in Adentro Afuera Intermedio OD 0,75 DI CS or CS	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in	OANSI OANSI OANSI OANSI Cubierta Cubierta Cubierta Cabeza Placa o Corte(150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante shoque %d) 22 vert	Trazado ninguna Espacio: c/c 12 Entrada23,	30 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión	Adentro Afuera Intermedio OD 0,75 DI CS orCS	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in	OANSI OANSI OANSI OANSI Cubierta Cubierta Cubierta Cubeza Placa o Corte(150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante shoque %d) 22 vert Tipo	Trazado ninguna Espacio: c/c 12 Entrada23,	30 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotan Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión	Adentro Afuera Intermedio OD 0,75 DI CS orCS	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in Fipo Simple Tipo sello Vuelta-U	OANSI OANSI OANSI OANSI Cubierta Cubierta Cubierta Cubeza Placa o Corte(150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ingitud 20 alty a carcasa a canal al flotante shoque %d) 22 vert Tipo s-placa	ninguna Espacio: c/c 12 Entrada23,	30 in 25 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	Adentro Afuera Intermedio OD 0,75 DI CS orCS ire	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in Fipo Simple Tipo sello Vuelta-U	OANSI OANSI OANSI OANSI OANSI Cubierta Cubierta Cubierta Cabeza Placa o Corte(Junta tubos Tipo haz 15	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ingitud 20 alty a carcasa a canal al flotante shoque %d) 22 vert Tipo s-placa	ninguna Espacio: c/c 12 Entrada23,	30 in 25 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa	Adentro Afuera Intermedio OD 0,75 DI CS orCS ire	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Ma DE 12,75 in Fipo Simple Tipo sello Vuelta-U	OANSI OANSI OANSI OANSI OANSI OANSI Cubierta Cubierta Cabeza Placa o Corte(Junta tubos Tipo haz 15 Lado Tubo	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 slty a carcasa a canal al flotante choque %d) 22 vert Tipo s-placa s	ninguna Espacio: c/c 12 Entrada23,	30 in 25 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	Adentro Afuera Intermedio OD 0,75 DI CS orCS ire	190 1 0,0625 3/150 3/150 /150 5prcMed 0,08 Mic DE 12,75 in Fipo Simple Tipo sello Vuelta-U Entrada	OANSI OANSI OANSI OANSI OANSI OANSI Cubierta Cubierta Cabeza Placa o Corte(Junta tubos Tipo haz 15 Lado Tubo	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante choque %d) 22 vert Tipo s-placa Sa	ninguna Espacio: c/c 12 Entrada23, anura/Expander	30 in 25 in
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI CS orCS ee A1176 ASME Co	190 1 0,0625 3/150 3/150 /150 0prcMed 0,08 Ma DE 12,75 in Fipo Simple Tipo sello Vuelta-U Entrada Sodiao Sec VIII Div	JANSI JANSI JANSI JANSI JANSI CABERIA Cubierta Cabeza Placa o Corte(Junta tubos Tipo haz 15 Lado Tubo	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante choque %d) 22 vert Tipo s-placa Sa	ninguna Espacio: c/c 12 Entrada23, anura/Expander alida haz 15 TEMA B	30 in 25 in lb/(ft*s2)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 55	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI CS orCS ee ASME Co 2777,4 ja TEMA, se obt	190 1 0,0625 3/150 3/150 /150 0prcMed 0,08 Ma DE 12,75 in Fipo Simple Tipo sello Vuelta-U Entrada Sodiao Sec VIII Div	JANSI JANSI JANSI JANSI JANSI CABERIA Cubierta Cabeza Placa o Corte(Junta tubos Tipo haz 15 Lado Tubo	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante choque %d) 22 vert Tipo s-placa Sa as Clase Ha	ninguna Espacio: c/c 12 Entrada23, anura/Expander alida haz 15 TEMA B	30 in 25 in lb/(ft*s2)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56	Número de pasos en Espesor de corrosión Conecciones Tamaño/Compr. in/ Núm.tubos107 Tipo de Carcasa CS Canal or bonnet Placa tubular estaciona Cubierta cabezal flotani Deflector-cruzando CS Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	Adentro Afuera Intermedio OD 0,75 DI CS orCS ee ASME Co 2777,4 ja TEMA, se obt	190 1 0,0625 3/150 3/150 /150 0prcMed 0,08 Ma DE 12,75 in Fipo Simple Tipo sello Vuelta-U Entrada Sodiao Sec VIII Div	JANSI JANSI JANSI JANSI JANSI CABERIA Cubierta Cabeza Placa o Corte(Junta tubos Tipo haz 15 Lado Tubo	150 2 0,0625 6/150 ANSI 6/150 ANSI /150 ANSI ngitud 20 alty a carcasa a canal al flotante choque %d) 22 vert Tipo s-placa Sa as Clase Ha	ninguna Espacio: c/c 12 Entrada23, anura/Expander alida haz 15 TEMA B	30 in 25 in lb/(ft*s2)

Tabla Nº D.7 Hoja tema intercambiador IP-7A con 4 pasos por los tubos.

	J					ercambiado		
1	Company: PDVSA-SAN	ROQUE						
2	Location:SANTA ANA							
3	Service of Unit: Enfriad	or de Nafta	Our Reference: N	IO APLI	ICA			
4	Item No.: IP-7A		Your Reference:	NO AP	LICA			
5	Date: 27/04/20	008 Rev No	o.: 4 Job N	lo.: TES	SISTA			
6	Tamaño 1224	10	in Tipo	BEM	hor	Conectado en	1 Paralelo	1 Serie
7	Area/Unid(ef)	418	ft2 asas/uni	dad 1		Area/Carc.(el	f) 418	ft2
8			Cumpl	imiento	una u	nidad		
9	Localización fluido				Lado	Carcasa	Lado	Tubos
10	Nombre de fluido				NΑ	FTA	AG	iUA
11	Cantidad total de fluido		lb/h		41	767	111	346
12	Vapor (Ent/Sal)		lb/h					
13	Líquido		lb/h	41	767	41767	111346	111346
14	Nocondensable		lb/h					
15								
16	Temperatura (Ent/Sal)		F	1	25	85,19	79	85,98
17	Punto cond/evapora	ación	F					
18	Densidad		lb/ft3		,561	48,548	62,303	62,256
19	Viscosidad		ср	0,	644	0,847	0,874	0,8
20	Peso molecular, Vap							
21	Peso molecular, NC			_				
22	Calor específico		BTU/(lb*F)		479	0,4574	1,0011	1,0008
23	Conductividad térmica		BTU/(ft*h*F)	0,	067	0,07	0,348	0,351
24	Calor latente		ВТИЛЬ					
25	Presión		psi	5			55	
26			ft/s			,73		98
27	Caída de Presión, perm		psi		10	1,016	10	25,623
	Resistencia ensuciamie		ft2*h*F/BTU		LIT	D 11	14.00	-
29 30	Calor intercambiado	778753 132,96	BTU/h	133,1		D corregido	14,03	DTILL(C+CO+C)
-	Coeficiente		Sucio ucción de car		<i>'</i>	Limpio 133		BTU/(h*ft2*F)
31 32		Consti	Lado	casa	Т.	Lado Tubos	DI	bujo
-	Presión Diseño/Prueba	poi		/Códigi				
-	Temperatura de Diseño		190	, couly	1 1	7, 700algo 150		
-	Número de pasos en		1		+	4	/ = m	—— т п\
	Espesor de corrosión	in	0,0625		+	0,0625	│ [╵] ╵ <u>┰</u> ┰╢┰╌┎┵	<u> </u>
37	Conecciones	Adentro		ANSI	1	6/150 ANSI		
38	Tamaño/Compr.	Afuera		ANSI	 	6/150 ANSI		
39	in/	Intermedio		ANSI	 	/150 ANSI		
	Núm.tubo:107	OD 0,75	oprcMed 0,08		_	jitud 20	ftirazado 1	in
	Tipo de				Admiralty		Trazado	30
	Carcasa CS	DI C	E 12,75 in		ubierta c		•	
	Canal or bonnet	CS		_	Cubierta d			
44	Placa tubular estaciona	rCS		0	Cabezal f	lotante		
	Cubierta cabezal flotani			F	Placa cho	oque	ninguna	
46	Deflector-cruzando CS	1	Tipo Simple		Corte(%d	d) 24 vert	Espacio: c/c 12	in
47	Deflector-long		Tipo sello				Entrada23,	25 in
48	Soportes-tubos		Vuelta-U			Tipo		
49	Sello bypass				a tubos-p	laca	ranura/Expander	
-	Junta de expansión			Tipo				
	RhoV2-Boquilla entrada	1176	Entrada			Sa	alida haz 11	lb/(ft*s2)
	Empaque-carcasa			Lado	o Tubos			
53	Cabezal flota							
-	Requerimientos		ódiao Sec VIII Div				TEMA B	
-	Peso/Carcasa	2780,7	Lleno de agua				az 1577,3	lb
			uvo de ajustes de	e calore	s tranferi	dos, sumando los	pocos	
57	datos que se tienen del	fabricante.						
58								

ANEXO E

DETALLES DEL DISEÑO DE UN CONDESADOR DE VAPORES QUE SALEN DEL AC-1.

TABLA Nº E.1 DATOS GENERALES DEL DISEÑO

		Lado C	arcasa	Lado 1	Tubos
Gases(Ent/Sal)	lb/h	4299	3769		
Líquidos (Ent/Sal)	lb/h		530	3000	3000
Temperatura (Ent/Sal)	F	130	85	80	107,9
Punto de Cond. or Evaporació	F	115			
Coeficiente película	BTU/(h*ft2*F)	397	,53	413	36,36
Resistencia de ensuciamiento	ft2*h*F/BTU				
Velocidad	ft/s	61,	.37	1,3	28
Caída de Presión (Perm/Calc)	psi	0,857	0,468	10	/1,762
Calor total intercambiado	BTU/h	8373	7 Tipo AEI	M hor	5 ser 1 par
Coeficiente global-en	BTU/(h*ft2*F)	175,7	2 Dim.Carca	10-48	in
Area efectiva	ft2	15	2 No.Tubos-[DE 40-	-0,75 in
MTD corregido	F	8,2	2 Deflecto 9	Simple	43 % vert
Factor de corrección del MTD			1 Pasos tubo	s 8	Cuadran

TABLA Nº E.2 ANÁLISIS DE RESISTENCIAS TÉRMICAS DEL DISEÑO.

	Limpio	Ensuc.espec.	Ensuciamiento
Area requerida ft2 Exceso de superficie %	58 162,63	58 162,63	152
Coeficiente global BTU/(h*ft2*F) Resistencia global ft2*h*F/BTU	175,72 0,0057	175,72 0,0057	66,91 0,0149
Ensuciamiento carcasa ft2*h*F/BTU Ensuciamiento lado tubos	0.0 0.0		
Distribución global de resistencia Película carcasa % Ensuciamiento carcasa % Pared tubo 0,0002 % Ensuciamiento tubos % Película tubos %	44,2 0.0 4,37 0.0 51,42	44,2 4,37 51,42	16,83 1,67 19,58

TABLA Nº E.3 COEFICIENTES DE TRANSFERENCIA DEL DISEÑO.

	Lado Carcasa	Lado Tubos
Coeficientes de pel. BTU/(h*ft2*F)		
Calculado por programa	397,53	413,36
Especificado por usuario		
Multiplicante especificado por usuario	1	1
Usado en diseño	397,53	413,36
Coeficiente desobrecalentado		
Coeficiente condensación	1057,58	
Coeficiente vapor sensible		
Coeficiente sensible-líquido		413,36
Coeficiente ebullición		
Coeficiente enfriante-líquido	40,79	
Número Reynolds	150,24	8382,84
Factor eficiencia aleta	1	
Temperatura promedio de metal	97,36	97,31

TABLA Nº E.4 ATML & FLUJO DEL DISEÑO

Diff.Temp. promedio	F	Flujo	BTU/(h*ft2)
MTD corregido usado en diseño	8,22	Flujo actual	550,3
LMTD		Fluido evaporante	
Factor de corrección del MTD	1	Flujo máximo nucleado	
Factor eficiencia Defl.Long.		Flujo máximo del programa	
MTD calculado-corregido	8,22	Flujo máximo especificado	
MTD corregido especificado por		Flujo máximo controlante	
Dirección del fluido			

TABLA Nº E.5 CAÍDAS DE PRESIÓN DEL DISEÑO

	Lado C	arcasa	Lado 1	Tubos
Caida de Presión psi Permitido Calculado, limpio Calculado, sucio Multiplicante de Haz especificado	0,4	85 168 168	1,7	0 762 762
Distribución de velocidad y caída de	ft/s	%dp	ft/s	%dp
Boquilla entrada Entrando en Haz Flujo cruzado A través de ventana/defl. A través de tubos Saliendo del Haz Boquilla salida	28,5 16,91 61,37 27,26 14,33 52,64	29,92 8,86 10,29 2,76 11,83 36,34	2,45 1,28 1,28 1,28 2,46	5,72 12,4 63,68 12,45 5,74

TABLA Nº E.6 CAÍDAS DE PRESIÓN DEL FLUJO LADO CARCASA

Análisis caudal lado carcasa	Fracción flujo %	Tolerancias Diamétricas in
Flujo cruzado Tolerancia: hoyo defl-d.e. tubos Toleancia: di carcasa-de defl. Toleancia: di carcasa-otl haz.	44,62 16,23 23,87 15,27	0,0312 0,125 0,375
Rho*v2 análisis	Rho*v2 lb/(ft*s2)	Límite TEMA lb/(ft*s2)
Boquilla entrada Entrada carcasa Entrada haz Salida haz Salida carcasa	173 77 61 47 103	1500 4000 4000 4000 4000

TABLA Nº E.7 DETALLES MECÁNICOS DEL DISEÑO: BOQUILLAS.

Tipo TEMA: AEM		Carcasa	Cabezal frente	
Diámetro externo cilindro	in	10,75	10,75	
Diámetro interno cilindro	in	10,136	10,136	
Diámetro externo Kettle	in			
Diámetro externo anillo vapor	in			
Longitud anillo vapor	in			
Boquilas-diámetro ext. nominal		Lado Carcasa	Lado Tubos	
Boquilla entrada	in	6/1	1/1	
Boquilla salida	in	4/1	1/1	
Drenaje	in	1/1	/	
Domo entrada	in			
Anillo distribución	in			
Arreglo carcasas:	5 Conectado	en 1 paralelo	5 series	
Total price	Dollar(US)	27900		

TABLA Nº E.8 DETALLES MECÁNICOS DEL DISEÑO: TUBOS.

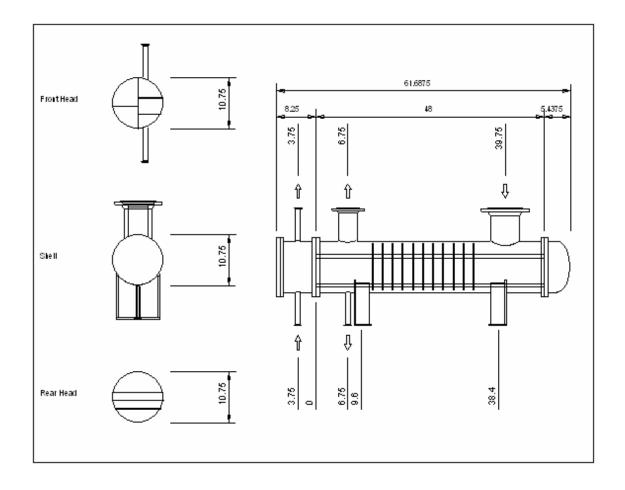
Longitud de tubo	ft	4	d.e. tubo	in	0,75
Número de tubos		40	Espesor tubo	in	0,065
Longitud entre tubos	in	0,9375	Especificación pared tub	0	Media
Trazado de tubos		30	Tipo de tubo		
Pasos tubos		8	Altura de aleta	in	
Trazado de tubos		quadrante	Espesor de aleta	in	
Espesor tubos (est.)	in	0,75	Densidad de aleta	#/in	
Junta tubos-placa	ran	ura/Expander	Area Ao/Ai		1,21
Espacio partición	in	0,5	Cinta torsida ancho de	in	
Desviación tubos/pasos		%	Proporción de torsión		

TABLA Nº E.9 DETALLES MECÁNICOS DEL DISEÑO: DEFLECTORES.

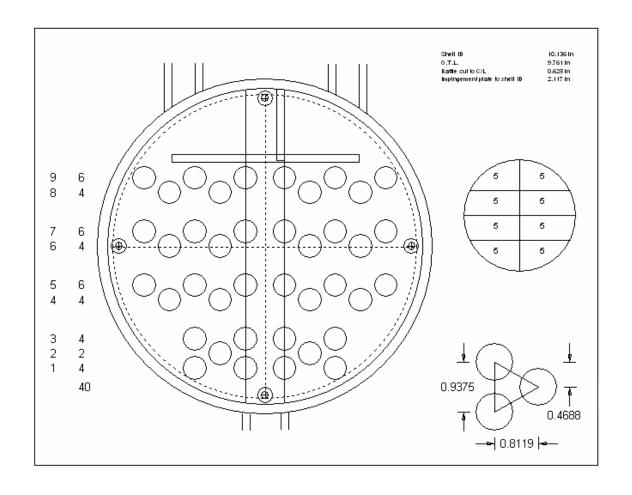
Tipo deflector		Simple	Toleancia: di carcasa-otl haz.	in	0,375
Espacio entrada	in	14,125	Tolerancia: hoyo defl-d.e. tubos	in	0,0312
Espacio c-c	in	2,125	Toleancia: di carcasa-de defl.	in	0,125
Espacio salida	in	11,125	Tolerancia: d.e. defl-otl haz	in	0,25
Num de Defl.		11			
Soportes			Protección de choque	place	a sobre el haz
Corte Defl.		43% vert	Tiras sellantes (par)		
Corte externo segment	ado	%	Límite ext. tubos	in	9,761
Corte interno segmenta	ado múltiple	%	Distancia abierta arriba	in	2,4917
Espesor deflector	in	0,125	Distancia abierta abajo	in	0,8006

TABLA Nº E.10 ANÁLISIS DE VIBRACIÓN DEL DISEÑO.

Para líquidos +	gase	es	Entrada	Haz	Salida	Vuelta-U
Indicación de vibración			No	No	No	No
Espacio de tubo sin soporte		in	16,25	4,25	13,25	
Velocidad flujo cruzado	٧	ft/s	16,91	61,37	14,11	
Velocidad crítica	VC	ft/s	331,32	4343,1	476,79	
Velocidad crítica/de cruze Vibración indicada	v/v si > 1	-	0,05	0,01	0,03	
Frecuencia natural de tubo	fn	Hz	398,7	3737,2	599,5	
Amplitud vortex shedding		in				
Límite de amplitud de vortex		0,015				
Amplitud turbulenta de buffet Límite de amplitud turbulenta	_	in 0,015	0	0	0	


TABLA Nº E.11 ANÁLISIS DE RESONANCIA ACÚSTICA DEL DISEÑO.

Para gases solamente		Entrada	Haz	Salida	Vuelta-U	
Frecuencia natural/Acústica			No	No	No	No
Espacio de tubo sin soporte	1	in	16,25	4,25	13,25	
Velocidad flujo cruzado	٧	ft/s	16,91	61,37	14,11	
Frecuencia acústica	fa	Hz	299,2			
Frecuencia vortex shed.	fs	Hz	60,6	219,9	50,6	
Frecuencia turbulenta buff.	ftb	Hz	80,4			
Proporción "a"	fa/fs		4,94			
	fa/ftb		3,72			
Resonancia indicada si 0.8-1.2						
Velocidad condición "b" ft/s		21,79				
Resonancia indicada si v > velocidad 'b'						
Velocidad condición "c"		ft/s	83,53			
Condición "c"			39526			
Resonancia indicada si v	> veloci	idad 'c'				
y condición 'c' >	2000					


TABLA Nº E.12 HOJA TEMA DEL DISEÑO

		Hoja de	e Especifica	ción de	el Interc	ambiado	r							
1	Company: PDVSA-SAN	I BOOLIE	-											
2			GUI											
3		APORES DE AC-		ence: NC) APLICA									
4		(Diseño)			D APLICA									
5		Rev N												
6			in Tipo /			ctado en	1 Paralelo	5Serie						
7	Area/Unid(ef)	152	ft2 asas/unio			Area/Carc.(e		ft2						
8			Cumpli	miento u	na unida	$\overline{}$,							
_	Localización fluido				Lado Carca		Lado Tubos							
10				VAPORES DE AC-1			AGUA							
11	Cantidad total de fluido		lb/h	4299			3000							
12	Vapor (Ent/Sal)		lb/h	4299	9	3769								
13			lb/h			530	3000	3000						
14	Nocondensable		lb/h											
15														
16	Temperatura (Ent/Sal)	F	130		85	80	107,9							
17	Punto cond/evapor	F	115											
18	Densidad		lb/ft3	0,214	4	43,439	62,297	62,033						
19	Viscosidad		ср	0,000	3	0,426	0,863	0,628						
20	Peso molecular, Vap													
21	Peso molecular, NC		BTU/(lb*F)											
22		0,438		0,5508	1,001	1,0001								
23		BTU/(ft*h*F)	0,012	2	0,078	0,348	0,36							
24		ВТИЛЬ												
25		psi	17			55								
26			ft/s		61,37 1,28									
27			psi	0,85	0,85 0,468 10 1,762									
_	Resistencia ensuciamie	<u> </u>	ft2*h*F/BTU											
_	Calor intercambiado	83737	BTU/h		MTD co		8,22	F						
30														
31								bujo						
32	5 7 5 7 5		Lado	07.11										
33				Códigi	75/	/Código								
	Temperatura de Diseño	F	190			70	m™m± ±tm.							
-	Número de pasos en		1			3	 	i						
36	Espesor de corrosión	in Adams	0,0625	ANICI		0625		- I						
37 38	Conecciones	Adentro Afuera	6/150 4/150			/150 ANSI								
-	Tamaño/Compr.					/150 ANSI								
39 40		Intermedio OD 0,75	1/150 pprcMed 0,065			/150 ANSI	ftirazado 0,	9275 :-						
41	Tipo de	00 0,75		terial CS	n_ongitud	4	Trazado u,	9375 in 30						
42	Carcasa CS	DI [)E 10,75 in		ierta carca	°a	1102000	30						
43	Cancasa Co Canal or bonnet	CS	/E 10,73 III		ierta carca ierta canal									
	Placa tubular estaciona			-	ezal flotani									
45							nlaca sobre e	l haz						
AE.	Litetlector-cruzando FC	, ,												
46 47														
47	Deflector-long					Tino								
47 48	Deflector-long Soportes-tubos		Tipo sello Vuelta-U	Junta tu	ihos-placa	Tipo	ranura/Evpander							
47 48 49	Deflector-long Soportes-tubos Sello bypass				ibos-placa		ranura/Expander							
47 48 49 50	Deflector-long Soportes-tubos Sello bypass Junta de expansión	a 173	Vuelta-U	Tipo	ibos-placa	·		lh/fft*s21						
47 48 49 50 51	Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada	a 173		Tipo naz 61		·	ranura/Expander alida haz 47	lb/(ft*s2)						
47 48 49 50 51	Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa		Vuelta-U	Tipo		·		lb/(ft*s2)						
47 48 49 50 51 52 53	Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	nte	Vuelta-U Entrada k	Tipo naz 61 Lado Ti		S	alida haz 47	lb/(ft*s2)						
47 48 49 50 51 52 53	Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos	nte ASME Co	Vuelta-U Entrada h ódiao Sec VIII Div	Tipo naz 61 Lado Ti		S. Clase	alida haz 47 TEMA B							
47 48 49 50 51 52 53 54 55	Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota	nte	Vuelta-U Entrada k	Tipo naz 61 Lado Ti		S. Clase	alida haz 47	lb/(ft*s2) lb						
47 48 49 50 51 52 53 54 55	Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	nte ASME Co	Vuelta-U Entrada h ódiao Sec VIII Div	Tipo naz 61 Lado Ti		S. Clase	alida haz 47 TEMA B							
47 48 49 50 51 52 53 54 55	Deflector-long Soportes-tubos Sello bypass Junta de expansión RhoV2-Boquilla entrada Empaque-carcasa Cabezal flota Requerimientos Peso/Carcasa	nte ASME Co	Vuelta-U Entrada h ódiao Sec VIII Div	Tipo naz 61 Lado Ti		S. Clase	alida haz 47 TEMA B							

FIGURA E.1 DETALLES PRINCIPALES DEL DISEÑO

FIGURA E.2 TRAZADO DE TUBOS.

ANEXO F:

DT&I distribucion de agua a las plantas de crudo, vacío y parafina de la Refineria San Roque

(Ver archivo de AutoCad en el CD)