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We perform a perturbation analysis (comparative statics) of how optimal reproductive e!ort
and per o!spring investment are jointly a!ected by di!erent selective factors. The factors
considered are: (1) mortality sources, classi"ed according to a!ected stage ( juvenile or adult)
and to its nature (avoidable or unavoidable), and (2) resource (energy) availability for the adult
individual. The joint approach reveals both direct and indirect e!ects of each selective
pressure. These interactive e!ects spring from the nonlinearity of reproductive expenditure,
separated into a part devoted to endowing o!spring (provisioning cost) and another part
invested to make reproduction possible (requisite cost). The latter is envisioned as a reverse
sigmoid function of fecundity (most models, so far, have considered only the "rst kind of cost).
The indirect e!ects have the consequence of enlarging the class of selective pressures that can
induce changes of o!spring size and clutch size, as compared with current explanations. So,
they illuminate new causes for some e!ects, and show new e!ects for some well-known
selective causes. Several joint patterns in the two variables, shown by animals and plants in the
"eld, can thus be given more appropriate interpretations than traditional, piecewise, ones.
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Introduction

The simultaneous di!erences in reproductive
e!ort and o!spring size observed in comparative
studies of several organisms (recent reviews in
Ro!, 1992; Stearns, 1992; Charlesworth, 1994)
cannot be accounted for in the current frame-
work of separate models purporting to explain
the various aspects of life-history evolution. To
believe otherwise is perhaps to be deluded by the
past overemphasis on r/K-selection, &&bet hedg-
ing'' or other &&blanket'' theories (Charlesworth,
1994, p. 226) which were misinterpreted as gen-
eral explanations of suites of life history traits.
*Author to whom correspondence should be addressed.
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We o!er here what we consider to be the best way
to tackle such problems: to build up explicit in-
tegrated models so as to properly explore its
consequences. We concentrate on reproductive
e!ort and investment per o!spring, but the same
approach should be extended to include other
features. In fact, an important related attempt to
put together life-historic and sexual parameters
has been recently undertaken by Zhang and his
associates (Zhang & Wang, 1994; Zhang et al.,
1996; Zhang & Jiang, 1997, 1998; Zhang, 1998)
although they have mainly intended to delimit
the validity conditions of traditional separate
models.

There is an obvious relation between total re-
productive e!ort and per o!spring investment,
( 2000 Academic Press
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and thus a possibility of trade-o!s between life-
history traits determined by these energetic vari-
ables. Total e!ort is the proportion of available
resources dedicated to reproduction whereas per
o!spring investment is the quantity of resources
put into each o!spring (o!spring energetic size).
Their interplay determines the number and size
of descendants. For a given total reproductive
e!ort, an increase in per o!spring e!ort occurs
at the expense of a reduction in fecundity: the
number-size trade-o!. A second trade-o!, be-
tween adult survival and fecundity, is possible:
the so-called cost of reproduction (Calow, 1979;
Bell, 1980; Reznick, 1985, 1992; Partridge, 1989;
Mole, 1994; Sinervo & De Nardo, 1996). But the
need for a simultaneous treatment of both ener-
getic variables has rarely been recognized, al-
though stressed by LeoH n (1984) and Winkler
& Wallin (1987). The current theory has con-
sidered energetic variables in a separate fashion,
notwithstanding their interactive character. Clas-
sical reproductive e!ort models analyse ultimate
factors determining optimal total e!ort, includ-
ing the survival cost of reproduction, but ignores
its subdivision among o!spring (Gadgil & Boss-
ert, 1970; Scha!er, 1974; Charlesworth & LeoH n,
1976; LeoH n, 1976). On the other hand, models
devoted to optimal per o!spring reproductive
investment are either formulated on the implicit
or explicit assumption of constant total repro-
ductive e!ort (e.g. Smith & Fretwel, 1974) or take
such e!ort as an evolutionary variable that does
not in#uence adult survival, omitting the cost of
reproduction (e.g. Parker & Begon, 1986).

The model of simple perennial life histories
that we present here puts together these two
trade-o!s, essentially by including in the energy
budget a nonlinear term referred to as requisite
cost. This is the energy required to make possible
o!spring production, invested in structures or
activities, and di!erent from the allotment dedi-
cated to provisioning the o!spring. We show that
the nonlinearity of this term leads necessarily to
link the optimizations involved, thus di!ering
from the outcomes of the two other integrated
models existing so far: that of Winkler & Wallin
(1987), who totally ignored this complementary
cost, and that of Zhang (1998), who considered it
linear. The coupling of optimizations turns out to
be necessary to understand the "eld results of
joint comparisons, mentioned already, which we
detail in the discussion. We analyse our model
within an optimization framework by a compara-
tive statics approach.

In mathematical economics, comparative
statics investigates how a function optimum is
a!ected by perturbations in characteristic para-
meters. In evolutionary ecology, strategic analy-
sis "nds out constrained phenotypes which
optimize (maximize) "tness, for some given
environment (Maynard Smith, 1978; Parker
& Maynard Smith, 1990; Charlesworth, 1994).
Here, comparative statics would ask for the
motion of optimal phenotypes when the environ-
mental parameters are perturbed. Thus, com-
parative statics could render two services to
evolutionary ecology. First, it allows a kind of
sensitivity analysis with respect to environmental
parameters, which could discern the strength,
direction and interconnection of the selective
pressures acting in some situation. Second, it
may provide the theoretical underpinning for a
comparative analysis of adaptive e!ects resulting
from related environments.

In life-history theory, such a kind of perturba-
tion analysis has appeared only sporadically
(Goodman, 1979; Law, 1979; Michod, 1979;
Brown & Venable, 1986; Sargeant et al., 1987;
LeoH n, 1988; PaH sztor, 1988; Nossbaun & Schultz,
1989; Meszèna and PaH sztor, 1990). But Caswell
& Real (1987), recognizing its full range of poten-
tial applications, recommended its wider use, in-
spired by the bene"ts reaped from the approach
by mathematical economics. But, in their attempt
to analyse life histories, they merely translated
directly some parts of consumer microeconomics
(Henderson & Quandt, 1971). LeoH n (in press) has
exposed some inconsistencies resulting from such
a procedure and, endorsing their proposal of
using comparative statics, o!ered some alterna-
tives. HernaH ndez & LeoH n (1995), in turn, have
extended the approach to age-structured and
density-dependent life histories and also to size-
structured ones (HernaH ndez & LeoH n, 2000). Kisdi
& Meszèna (1993) used it to study the joint e!ect
of stochastic #uctuations and density depend-
ence, whereas Kisdi et al. (1998) considered the
shaping of reaction norms by individual optim-
ization. Now, comparative statics requires a clear
stipulation of the environmental parameters
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a!ecting the components of "tness, because the
perturbation of these parameters is central to the
approach. An obvious "rst approximation con-
sists of discriminating among mortality factors
which a!ect di!erent stages of the life history.
LeoH n (1983,1988) has suggested an additional
conceptualization: the contrast between unavoid-
able and avoidable mortality. A given mortality
source is unavoidable if its e!ect is independent
of any organism's defense e!ort. If its impact can
be counteracted through energy investment on
survival, mortality is avoidable. LeoH n has studied
the e!ect of both types of mortality solely on total
reproductive e!ort. Another parameter deserving
attention is environmental richness as represent-
ed by the total energy available per capita. We
explore the in#uence of all these parameters on
optimal values of the energetic variables charac-
terizing the life history and thereby tackle some
classical questions on optimal clutch size and
o!spring size.

LeoH n (1983,1988) posed the distinction be-
tween &&direct'' and &&compensatory'' strategies,
recently explored again by HernaH ndez & LeoH n
(1995). We surmise one additional concept, that
of indirect compensatory strategies (see the dis-
cussion in the section modifying unavoidable
mortality), to account for some responses appear-
ing in systems with interactive e!ects, as the one
studied herein.

The Model

The model assumes an asexual organism with
a biphasic life history: a non-reproductive
(o!spring), and a reproductive (adult) stage.
Reproduction occurs in discrete episodes. In each
episode, the adult fecundity is B, and its chance of
surviving to the next reproductive episode is
P. The newborn has a probability S of reaching
maturity. The period between reproductive epi-
sodes coincides exactly with the time elapsed
from birth to maturation. The change in numbers
of adults (N) is given by N

(t`1)
"jN

(t)
(Charnov

& Sha!er, 1973), where

j"BS#P. (1)

The adult clone population growth rate (j) is
a measure of "tness, a combination of life history
traits. Assuming a density-independent and con-
stant environment, the life history favored by
natural selection is the one endowed with
maximal j.

To pose asexual models has been a favorite
gambit of strategic analysis in evolutionary ecol-
ogy. This usually allows a clear-cut examination
of the consequences of natural selection acting
in speci"ed environmental regimes and con-
strained by certain assumed trade-o!s (Parker
& Maynard Smith, 1990; Seger & Stubblefeld,
1996). Hence, the &&as if asexual'' approach, ad-
opted for heuristic reasons, became common
practice for modeling density-independent and
density-dependent selection (Charlesworth, 1994)
and even frequency-dependent selection in the
context of evolutionary game theory (Maynard
Smith, 1982). The extension to sexual popula-
tions is not always straightforward, but often
works properly, with the rate of growth of the
heterozygote &&population'', as compared with
that prevailing in the &&established'' population,
deciding whether a gene can invade or not
(Charlesworth, 1994). Another method is to inter-
pret the population per capita rate of increase as
the objective function to be optimized, justifying
it by quantitative genetics arguments referring to
the change of the mean of one or several charac-
ters (Charlesworth, 1990, 1994; Stearns, 1992;
Ro!, 1992,1994). In this spirit, we pose our
models as if asexual, but then occasionally reason
in terms of costs characteristic of sexual organ-
isms, and examine sexual examples to validate
our conclusions.

Having formulated the basic demographic
model, we de"ne the following energetic vari-
ables: E is the total energy gathered by an adult
individual during the period between reproduc-
tive episodes. e the total reproductive e!ort, the
fraction of E put into reproductive activities
(0)e)1). The remaining fraction is devoted to
adult survival and is denominated &&survival
e!ort'' (p). Thus, e#p"1. e is per o!spring
reproductive investment, the amount of energy
put into each o!spring, or energetic size
(0)e)Ee).

For a given level of energy per adult (E), the
fecundity B is determined by total reproductive
e!ort (e) and per o!spring investment (e). If we
take B as an increasing function of e and a general



FIG. 1. Adult and o!spring survival functions. (a) The
adult probability of surviving (p) is represented as a function
of the intensity of mortality factors (m

a
) and the reproductive

e!ort (e); the slope Lp/Lm
a
is less pronounced at low levels of

e (high levels of survival e!ort, p): mortality is easy to avoid
(EAM). (b) The o!spring probability of surviving (s) is
shown as a function of the intensity of mortality sources
m

o
and energetic size (e); the slope Ls/Lm

o
is less pronounced

in high levels of e: mortality is easy to avoid (EAM).

o o
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decreasing function of e, then

B"B (e, e;E),

where

A
LB
LeB'0 and A

LB
Le B(0. (2)

The environmental parameter E determines the
scale of possible values of B. In the present study,
B will be determined as an implicit function of
e and e through the imposition of a budget con-
straint which will be discussed in the forthcoming
section.

The adult and o!spring survival probabilities
(P and S) are partitioned into survival to avoid-
able and unavoidable mortality factors. Thus,
n(k

a
) is the adult probability of surviving to an

unavoidable mortality agent of intensity k
a
. /(k

o
)

is the o!spring survival probability to an un-
avoidable mortality source of intensity k

o
.

p(e; m
a
, E) is the adult probability of surviving to

an avoidable mortality factor of intensity m
a
.

This probability depends on the survival e!ort
p and thus on e, the total reproductive e!ort. The
probability p decreases as m

a
increases and it is

a strictly decreasing concave downward function
of e. Total energy per adult (E) determines the
scale of potential values of p. Thus,

Lp
Lm

a

(0,
Lp
Le

(0 and
L2p

Le Lm
a

(0

or equivalently

L2p
Lp Lm

a

'0, (3)

the negative sign of the "rst mixed derivative
indicates that we assume the mortality source to
be easy to avoid (EAM), as LeoH n (1988) has
deemed this case. It means that the decline of
p due to the increase of m

a
is less pronounced at

low levels of e, i.e. high levels of survival e!ort p:
defense is possible and e!ective [Fig. 1(a)]. On
the contrary, a positive mixed derivative would
mean that the slope Lp/Lm

a
becomes more pro-

nounced as e decreases, i.e. as the survival e!ort
p increases: defense is not e!ective and mortality
is hard to avoid (HAM). We focus our attention
on the EAM case because HAM is qualitatively
similar to unavoidable mortality.

s(e;m
o
) is the o!spring probability of surviving

to avoidable mortality sources of intensity m
o
,

depending on its energetic size (e), s increases
with e and decreases with m

o
. Thus,

Ls
Lm

(0,
Ls
Le

'0 and
L2s

LeLm
'0, (4)
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where the sign of the mixed derivative expresses
the easily avoidable condition of the mortality
source [Fig. 1(b)]. Notice that this m

o
refers to

those hazards to the o!spring that can be com-
bated by the energetic investment of the adult, i.e.
by some kind of protection conferred by this.
Once the o!spring becomes an independent ju-
venile there is nothing the adult can do about its
protection and so we include this remaining sur-
vivorship within the survival to unavoidable fac-
tors. There is, of course, an additional strategic
problem that we avoid considering here: how
does the juvenile allocate its independently pro-
cured energy between growth and survival?

According to these assumptions, the adult and
o!spring survival probabilities are reexpressed
by

P (e ; k
a
, m

a
, E)"n (k

a
)p (e ;m

a
,E ), (5a)

S (e ; k
o
,m

o
)"/(k

o
) s (e ; m

o
). (5b)

The "tness index j is a function of the evolu-
tionary energetic variables (e, e ) and the environ-
mental parameters (m, k and E). Denoting by
w the column vector of reproductive allotments
and by q the column vector of parameters:

j"j (w;q), (6)

where

wT
"(w

1
, w

2
)"(e, e) and

qT
"(q

1
,q

2
, q

3
, q

4
, q

5
)"(k

o
,k

a
, m

o
, m

a
, E).

Optimal levels of reproductive allocations are
obtained by setting the partial derivatives of
j with respect to the energetic variables equal to
zero (Chiang, 1974):

Lj (w; q)
Lw

"0. (7)

The second-order condition required to guaran-
tee a maximum of j is d2j"dwT )H )dw(0,
where H is the Hessian matrix of second partial
derivatives of j with respect to the energetic
variables. The second-order condition in turn
requires

h
11
"

L2j

Le2
(0, h

22
"

L2j

Le2
(0

and

D"A
L2j

Le2B A
L2j

Le2B!A
L2j

LeLeB
2
'0.

The two "rst-order conditions characterizing
the maximum are

(a)
Lj

Le
"

LB (e, e;E)

Le
s(e;m

o
)/(k

o
)

#

Lp (e;m
a
, E)

Le
n (k

a
)"0. (8)

This means that at the optimum, the marginal
increase in e!ective fecundity resulting from in-
vesting e!ort in producing more o!spring equals
the marginal increase in adult survival that
would result from decreasing such an e!ort. The
marginal gains from investing in fecundity and
survival become equal.

(b)
Lj

Le
"

LB (e, e;E)

Le
s (e, m

o
)/(k

o
)

#B (e, e; E)
Ls (e,m

o
)

Le
/(k

o
)"0. (9)

This implies that, at the optimum, the marginal
increase in e!ective fecundity gained by investing
energy in o!spring survival equals the increase
that would result from augmenting numbers by
diminishing o!spring size.

Independent or Joint Optimization?

The traditional models have been posed as if it
were possible to obtain independently the opti-
mal values of e and e. Thus, the reproductive
e!ort models (Gadgil & Bossert, 1970; Scha!er,
1974; Scha!er & Gadgil, 1975; Charlesworth



FIG. 2. The curves eL (e) and eL (e) in the plane e}e when the
fecundity function assumed is B"Ee/e. The optimum oc-
curs where the curves cross each other (block dot). Curve eL (e)
is a vertical straight line while curve e(eL ) reaches a maximum
when it crosses eL (e). In this case, eL can be obtained indepen-
dently while eL is merely e (eL ).
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& LeoH n, 1976; LeoH n, 1976; Law, 1979; Michod,
1978; Charlesworth, 1994) ignored egg size, and
vice versa (Vance, 1973a,b; Smith & Fretwell,
1974; Brockelman, 1975; Parker & Begon, 1986;
Lloyd, 1987; Sargeant et al., 1987; Venable, 1988;
Morris, 1996; Geritz, 1995). Hence, not only
pedagogical reasons but perhaps also tradition
led to separate treatments of both optimizations
in two recent comprehensive books on life his-
tories (Ro!, 1992; Stearns, 1992). But eqns (8) and
(9) de"ne, in general, each optimum as a function
of the other evolutionary variables, eL (e) and eL (e).
Thus, we have two curves in the e}e plane, corre-
sponding to ridges of j, and the joint optimum (if
only one exists) occurs where these curves cross
each other. We can easily get by implicit di!eren-
tiation of eqns (8) and (9), the derivative of curves
eL (e) and eL (e):

deL
de

"!

(L2j/LeLe)
(L2j/Le2)

and

deL
de

"!

(L2j/LeLe)
(L2j/Le2)

. (10)

Since both denominators are assumed to be
negative, the sign of these derivatives is deter-
mined by the numerator, i.e. the mixed second
partial derivative evaluated along eL (e) [eqn (8)]
and eL (e) [eqn (9)], respectively.

Only in very special cases can the optimiza-
tions (or at least one of them) be independent.
This happens in the few antecedents we know of
joint allocation models (Winkler & Wallin, 1987;
Zhang, 1998; Zhang & Jiang, 1998), and is due to
the special form of their assumptions. Winkler
and Wallin use a form of B (the same form used
so far in all egg size models, B"Ee/e) which
necessarily leads to an independent determina-
tion of e, although not of e, which is a function
eL (e) as we shall see presently. Also, Parker & Be-
gon (1986), in a model which considers together
foraging time and egg size in insects, obtained
initially uncoupled optimizations of these vari-
ables, coupled thereafter by introducing sibling
competition.

Suppose, as Winkler & Wallin (1987) do, that
B"Ee/e, which is the fecundity function as-
sumed in all the per o!spring investment models
published so far. Then eqn (9) becomes

Lj
Le

"B G!
S
e
#

LS
LeH"0, (11)

which is the optimization condition "rst deduced
by Smith & Fretwell (1974). The mixed partial is
in this case,

L2j
LeLe

"

LB
Le G!

S
e
#

LS
LeH , (12)

which is equal to zero if evaluated along the curve
eL (e), given by eqn (11). Therefore, the derivative of
the curve is zero, and the curve is a vertical
straight line erected at some constant value eL
determined by eqn (11). But the mixed partial is
not zero when evaluated along eL (e). As e in-
creases, the slope dS/de is at "rst steeper than S/e,
then equal (at eL ) and then less steep. The deriva-
tive deL /de is therefore initially positive, then zero,
then negative (Fig. 2). In summary, when
B"Ee/e, eL can be obtained independently, and
then eL is merely e(eL ).

Now, not all the energy devoted to reproduc-
tion is divided among the eggs or seeds. Zhang
(1998) and Zhang & Jiang (1998) assumed that in
plants the provisioning of seeds happens after
their number has been determined. Thus, female
allocation includes two terms: one that deter-
mines numbers, taken as merely proportional to
these (say k )B), and another allotted among
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o!spring to determine their size, which would be
the traditional Be. But this recognition of another
component in the allocation constraint, insofar
as it is linear, keeps the optimizations indepen-
dent, as Zhang (1998) remarked.

However, such a linearity ignores the nature of
some requisite processes involved in the deter-
mination of numbers. For instance, Zhang (1998)
and Zhang & Jiang (1998) assume, invoking
respectable antecedents (Charnov, 1982; Charles-
worth, 1994), that pollen availability does not
limit female fecundity. But Sakai & Sakai (1995)
(see also Sakai, 1995) emphasized #ower con-
struction as required for attracting pollinators,
an investment assumed to exhibit diminishing
returns. In their model, such a component is
crucial to explain the positive relationship be-
tween plant size and seed size, found by them in
¸ilium auratum and further documented by Sakai
(1996) in several outcrossing plants.

The whole "eld of sexual selection (Harvey
& Bradbury, 1991; Ryan, 1997) illustrates expen-
diture fuelled to reproduction but not put into
each o!spring. It is blatantly deployed in males
but involves females as well. To give an example,
the success of external fertilization demands ag-
gregation and synchronous spawning (Babcock
et al., 1992) and often to endow eggs with chem-
ical attractants or accessory structures (Miller,
1985; Bucland-Nicks, 1993; Podolsky & Strath-
man, 1996). Thus, Low (1978) separated repro-
ductive e!ort into mating e!ort and caring e!ort,
to understand reproductive strategies in marsu-
pials, and Sargeant (manuscript) has used this
distinction to model sexual investment in male
sticklebacks. But sexual structures or behaviors
are not the only requirements previous and/or
concomitant to progeny production. There are
others, even in asexual organisms (Sibly &
Calow, 1982) which draw their resources from
reproductive e!ort. Reekie & Bazzaz (1987) point
out that, in plants, reproduction involves not
only the production of #owers and fruits, but also
of various ancillary or support structures. Calow
(1979) has discussed physiological and behavioral
costs of reproduction in animals (see also Sibly
& Calow, 1986). Some of these are not involved in
the direct endowment that determines progeny size.

We shall include, therefore, a nonlinear term
C(B) in the reproductive budget, besides the
traditional Be term:

Ee"Be#C (B). (13)

We shall call as &&requisite cost'' this nonlinear
function, and &&provisioning cost'' the term Be.
Thus, we de"ne the relationship between fecund-
ity B, reproductive e!ort e, and progeny size e,
through a cost constraint, in the manner of pro-
duction theory in microeconomics (Henderson
& Quandt, 1971; Silberberg, 1978).

We postulate this C(B) function to be increas-
ing and reverse sigmoid (downward concave}
convex). That is, the "rst derivative is always
positive (dC/dB'0), and the second derivative
changes from negative to positive: d2C/dB2(
0Pd2C/dB2'0. Figure 3 presents two exam-
ples. In Fig. 3(a) there is a large branch exhibiting
diminishing di$culties for o!spring production
(second derivative negative) and a short branch
with increasing di$culties. The other example
[Fig. 3(a)] shows opposite characteristics. These
two examples, of course, are in the way to the
extremes of pure concavity (d2C/dB2(0) and
pure convexity (d2C/dB2'0).

Our reasons for using this form for the requi-
site cost are the same as those prevailing in eco-
nomic theory: the "rst units produced usually
require special e!orts which can then be partially
capitalized on for adding more easily further
units. Eventually, increasing marginal di$culties
supervene (see Henderson & Quandt, 1971,
Fig. 3.6). These, of course, are the reasons that led
Taylor et al. (1974), LeoH n (1976), and Scha!er
& Rosenzweig (1977) to consider sigmoid (con-
vex}concave) curves for their curves of e!ective
fecundity (our BS) vs. reproductive e!ort. Also,
Sakai (1996) postulated a sigmoid pollinization
function of the allocation to #ower attractiveness.
It is interesting that Sikes (1998) measured lacta-
tion costs as a function of litter size in the grass-
hopper mouse Onychomys leucogaster and found
a reverse sigmoid (concave}convex) curve of the
kind which we postulate for our C(B). He has
recently delved into the implications of such
a curve in litter size problems (Sikes, 1998).

The consequences of including our &&requisite
cost'' function in the reproductive budget will
be presently explored. Equation (13) leads to the



FIG. 3. Two examples of increasing and reverse sigmoid
C(B) functions (downward concave}convex). In these func-
tions the "rst derivative is always positive (dC/dB'0)
while the second derivative changes from negative to posit-
ive: d2C/dB2(0Pd2C/dB2'0. (a) The C(B) function
is mainly concave: it shows a large branch exhibiting
diminishing di$culties for o!spring production (second
derivative is negative) and a short branch with increasing
di$culties (second derivative is positive). (b) The C(B)
function is mainly convex: the initial branch with diminish-
ing return is short while the second branch with increasing
return is large.

FIG. 4. Consequences of including a &&requisite function''
C(B) in the reproductive budget: e!ects on the optimal
propagule size. The graph shows the o!spring survival (s)
as a function of o!spring size (e) and o!spring number (B)
(right-side), and the curve representing the derivative
dC/dB (bottom left-side). The condition for optimal
propagule size requires that: LS/Le"S/e#(LC/LB). In-
stead of the classical Smith}Fretwell condition*equality
of the derivative dS/de with the quotient S/e*we have an
additional term dC/dB in the denominator of the quotient,
which bids for an optimal propagule size (e**) larger that
the Smith}Fretwell size (e*). If C (B) is not linear, the term
dC/dB is a function of e and e, and its optimal value cannot
be independently determined: the optimizations of both
e!orts must be linked. If C(B) is linear then dC/dB is
a constant and the optimization of e is independent of e.
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derivatives:

LB
Le

"

E
e#(LC/LB)

, (14a)

LB
Le

"!

B
e#(LC/LB)

. (14b)

Notice that eqn (15b) gives an interesting form
to eqn (9), the condition for optimal propagule
size:

Lj
Le

"B G!
S

e#(LC/LB)
#

LS
LeH"0. (15)
Comparing with eqn (11), we see that instead of
the classical Smith}Fretwell condition (equality
of the derivative dS/de with the quotient S/e) we
have an additional term dC/dB in the denomin-
ator of the quotient, which bids for an optimal
propagule size larger than the Smith}Fretwell
size. Moreover, this term is a function of e and
the other variable, e, so that the optimal value
of dC/dB cannot be independently determined,
and the two optimizations must be linked.
Figure 4 shows a graphical interpretation of this
condition. Of course, if C (B) is linear, as posited
by Zhang (1998), dC/dB is a constant [see
Fig. 3(a) of Zhang, 1998].

Developing the crucial mixed partial in the
numerator of eqns (10), which determine the sign
of the derivatives of the two curves eL (e ) and eL (e),
we obtain

L2j
Le Le

"

L2B
Le Le

S#
LB
Le

LS
Le

, (16)



FIG. 5. The two pairs of curves eL (e) and eL (e) of conditional
optimal values of one of the energetic variables as a func-
tion of the other, for the two non linear C(B) functions
shown in Fig. 3. (a) A mainly concave C(B) function is
assumed, that is, one with a long branch with positive
(L2C/LB2). In this case, the curve eL (e) grows for a long time
before reaching its maximum at e"eL , whereas eL (e) has the
form determined by L2C/LB2 alone. The two curves cross
when their derivatives are positive. (b) A mainly convex
C(B) function is assumed. In this case, the branch with
negative L2C/LB2 prevails, the curve eL (e) reaches its max-
imum soon, and the two curves cross when their
derivatives are negative. The optimizations of e and e are
necessarily linked.
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which can be rewritten, after some rearrange-
ment, as

L2j
Le Le

"

1
B

LB
Le G

Lj
Le

#SA
LB
Le B

2 L2C
LB2H . (17)

By de"nition, (Lj/Le)"0 along eL (e) and the
derivative of the curve eL (e) will be governed by
(L2C/LB2). So, if C(B) were linear, with (L2C/LB2)
"0, as assumed by Zhang (1998), we would have
the same results obtained before [when C(B)
"0)] for the model of Winckler & Wallin (1987),
and the separation of optimizations holds.
Figure 2 continues to represent this case.

However, when C(B) adopts the forms repre-
sented in Fig. 3, the optimizations are necessarily
linked. When C (B) has a long branch with posit-
ive (L2C/LB2), as in Fig. 3(a), the curve eL (e) grows
for a long while before reaching its maximum at
e"eL , whereas eL (e) has the form determined by
L2C/LB2 alone. The two curves cross when the
derivatives of both eL (e) and eL (e) are positive. This
is represented in Fig. 5(a). Otherwise, if the
branch with negative L2C/LB2 prevails, as in
Fig. 3(b), the curve eL (e) reaches its maximum
soon, and the two curves cross when their deriva-
tives are negative, as shown in Fig. 5(b).

Comparative Statics (Perturbation Analysis)

Di!erentiating implicitly eqn (7) with respect
to q we obtain the e!ect on wL produced by
in"nitesimal changes of the existing level of envir-
onmental parameters:

dwL
dq

"!A
L2j(w; q)

Lw2 B
~1

A
L2j (w; q )

LwLq B . (18)

In detail, the e!ect of an in"nitesimal change of
parameter q

i
on and eL is given by

deL
dq

i

"!

L2j/Le Lq
i
#L2j/Le Le (deL /dq

i
)eL

D
1

(19a)

and

deL
dq

i

"!

L2j/Le Lq
i
#L2j/Le Le (deL /dq

i
)eL

D
2

, (19b)
where

D
1
"

L2j
Le2

#

L2j
Le Le A

deL
deBq

i

and

D
2
"

L2j
Le2

#

L2j
Le Le A

deL
deBq

i

.
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The sign of eqns (19a) and (19b) is determined by
the sign of the numerator, given that D

1
(0 and

D
2
(0 according to the second-order conditions

for a maximum of j. The detailed derivation of
these equations is given in the appendix.

In general, the change of the optimal value of
any variable caused by the increase of a para-
meter can be partitioned into two components:
one produced by the direct e!ect of the factor on
the variable itself [given by the "rst term in the
numerator of eqns (19a) and (19b)] and another
produced indirectly by modifying the other vari-
able [expressed by the term between braces in the
numerator of eqns (19a) and (19b)]. Notice that
both indirect e!ects are mediated by the mixed
partial derivative L2j/LeLe. This, as discussed
above, can be positive or negative. The e!ects of
particular factors are analysed henceforward.

Notice also that eqns. (A.5a) and (A.7a) (see the
appendix) give, if evaluated at any e (or e), the
e!ects of modifying q

i
on the entire curves eL (e) or

eL (e). For example, deL (e)/dq
i
'0 means that the

e!ect of q
i
is to increase eL for any , i.e. to push

the new eL (e) curve to lie above the unperturbed
one. Thus, we could easily give graphical inter-
pretations of the perturbation e!ects.

INCREASES OF ANY UNAVOIDABLE MORTALITY

OR OF THE AVOIDABLE MORTALITY FACTORS

AFFECTING THE ADULT

If the perturbation occurs either in any of
the unavoidable mortalities (q

i
: k

o
, k

a
) or in

the avoidable hazards a!ecting the adult
phase (q

i
"m

a
), we have at equilibrium that

L2j/Le Lq
i
"0. The indirect component of

eL change vanishes, and eL remains exclusively sub-
ject to the direct action of the concerned mortal-
ity factors. The optimal per o!spring investment
eL , though, is not directly a!ected by these factors.
Its change could only be indirectly prompted
through the modi"cations provoked by these
mortality sources on total e!ort, when such an
indirect e!ect exists. Analysing the modi"cation
of e, note that what matters is the sign of the
mixed derivative L2j/LeLq

i
. Thus, increasing un-

avoidable mortality favors a reduction of repro-
ductive e!ort when it a!ects juveniles (q

i
"k

o
)

but an increase when it impinges on adults
(q

i
"k

a
), giving L2j/Le Lk

o
(0PdeL /dk

o
(0 and
L2j/LeLk
!
'0PdeL /dk

!
'0. These are compen-

satory strategies (LeoH n, 1983), i.e. reallocations of
total energy that reduce investment on the
a%icted "tness component*adult survival or
e!ective fecundity*thereby enhancing the other
component.

Intensifying the avoidable perils which jeop-
ardize the adult stage (q

i
"m

a
) favors an in-

creased investment in defense at the expense of
reproductive activities. This represents a direct
strategy (reallocation by investing more on the
a!ected phase; LeoH n, 1983,1988):

L2j
Le Lm

a

(0P
deL

dm
a

(0.

If the indirect e!ects of these mortality factors
(k

o
, k

a
, m

a
) on total e!ort do not exist, the opti-

mal energetic propagule size is not altered in
these three situations. Optimal clutch size
changes directly and exclusively with e, without
o!spring quality modi"cation. If the requisite
cost function is purely or mainly downward con-
cave [Fig. 3(a)] then L2j/LeLe(0, and so opti-
mal o!spring size eL changes in the opposite sense
to eL . The change of B caused by e is thus rein-
forced by the change of eL . Solely or mainly
convex cost [Fig. 3(b)] conduces to coincident
changes of both energetic variables and therefore
to opposite, mutually damping, e!ects on B.

INCREASES IN AVOIDABLE MORTALITY FACTORS

AFFECTING THE OFFSPRING

Increases in the avoidable hazards that haunt
the o!spring (q

i
"m

o
) a!ect directly both e!orts.

Indirect e!ects on e due to changes on e are now
possible. In the simple case of null or linear requi-
site cost function C(B), eqns (19a) and (19b) for
q
i
"m

o
reduce to give L2j/LeLm

o
'0 and so

deL /dm
o

is negative, and L2j/LeLm
o
(0 and so

deL /dm
o

is positive, respectively. Increases in m
o

would militate towards reducing the investment
on reproduction but enhance the investment on
each o!spring: lower number of o!spring but
higher quality of each one. A solely or mainly
concave C (B) curve [Fig. 3(a)] would reinforce
these results because in this case the direct and
indirect components of change have similar signs.
With a mainly convex C(B) curve [Fig. 3(b)] both
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components would counteract each other and
this would mitigate the change in fecundity.

INCREASES IN PER ADULT TOTAL ENERGY

For the simple case B"Ee/e, the mixed deriv-
atives L2j/LeLe and L2j/LELe are equal to zero at
the optimum. Therefore, expression (19b) with
q
i
"E vanishes at the optimum: optimal per o!-

spring e!ort does not change. The change of eL is
governed by the sign of the mixed derivative in
the numerator:

L2j
LELe

"

s (e;m
o
)

e
/(k

o
)

#

L2p(e;m
a
,E)

LELe
n(k

a
). (20)

The "rst term is positive while the second term is
assumed to be negative: the enhancement of p(e)
with the increase of p (decrease of e) is more
pronounced at high values of available energy.
This e!ect increases with the relative importance
of the avoidable mortality sources. The entire
expression (20) is positive if the "rst term is
greater than the second one. Thus, increases in
reproductive e!ort when adult resources aug-
ment are expected when there is a benign o!-
spring environment with low, unavoidable as
well as avoidable mortality (/ and s high) and an
adverse adult environment with high mortality
predominantly unavoidable (n low, L2p/LELe
low). Note that the enrichment of the adult's
environment would have a two-fold e!ect on
B because it enhances the scale of potential values
of B for any given e, and favors directly the
increase in optimal e!ort eL . Opposite situations
lead to a reduction of total e!ort with increased
resources.

For fecundity functions with interactive e!ects
between e and e, which appear with our nonlinear
C(B) function, the mixed derivatives L2j/LeLe and
L2j/LELe are not zero. Assuming that they ex-
hibit the same sign (a germane assumption due to
the similar positive e!ects of E and e on B) the
following results hold:

(a) The indirect e!ect on eL , now possible, is
positive whatever the sign of its interaction
with per-o!spring e!ort e.
(b) Whenever enhancing E favors directly the
increase of total e!ort, this will be accom-
panied by a reduction or increase of e if the
requisite cost function is mainly concave or
convex [Fig. 3(a) or (b)], respectively. In
this case, the indirect changes reinforce the
direct e!ects on e and e induced by E.

(c) Whenever the reduction of optimal total
e!ort is favored by enriching the adult envir-
onment, the direct and indirect e!ects on
eL oppose each other, e.g. if the C(B) curve is
mainly convex [Fig. 3(b)], per-o!spring
investment will be directly and positively
a!ected by E, but indirectly and negatively
a!ected by an e reduction.

Discussion

Life-history theory has mainly focused on pro-
ducing models of how separate components of
the life cycle contribute to "tness, considering
limited trade-o!s between these components, and
performing constrained optimization analysis of
such problems (Sibly & Calow, 1986; Ro!, 1992;
Stearns, 1992; Charlesworth, 1994). Conse-
quently, the experimental or "eld evaluations of
these models have often separately measured
variables involved in simple trade-o!s (Ro!,
1992; Stearns, 1992).

Studies considering simultaneous comparisons
of several variables, on the other hand, were
mainly undertaken under the patronage of
theories which stressed the selective action of
some environmental factors such as population
density (r/K selection, MacArthur, 1972), stress
(Grime, 1979), and adversity (Southwood, 1977;
Greenslade, 1983). Although simplistic in their
overemphasis, these encompassing theories have
had the virtue of attempting to understand why
several adaptive traits tend to occur together in
certain circumstances.

Theories that contain the proper parameters,
on the other hand, see the life history as a patch-
work of disconnected aspects. They hardly can,
therefore, explain the kind of plural comparisons
that were initiated under the auspices of the
&&environmental'' theories. So, we will have to
include in a more encompassive framework the
kind of nonlinear, synergistic e!ects that we have
put out here. To insist on this, we will show now
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a few examples of how the disconnected para-
digm is insu$cient to understand simultaneous
di!erences in some traits, which seem to require
an integrative approach to be accounted for.

MODIFYING UNAVOIDABLE MORTALITY

The elegant study of Trinitarian guppies
(Poecilia reticulata) by Reznick and his col-
leagues established unequivocally the selective
consequences of predation on juveniles or adults.
Reznick and Endler (1982) identi"ed three kinds
(C, R, A) of stream in which the main predators
were: (C) Crenicichla alta, predating mostly
on adults, (R) Rivulus hartii, on juveniles,
(A) Aequidens pulcher, with only slight predation
on all size classes. The life history parameters of
the guppies rank in the following order. Repro-
ductive e!ort: C'A'R; litter size: C'A'R;
o!spring size: R'A'C. The genetic bases were
established by Reznick (1982a, b). Moreover,
Reznick et al. (1990) performed a selection experi-
ment changing predation on adults to predation
on juveniles. They found the whole set of traits to
move in the same direction as the observed natu-
ral di!erences after 11 years (30}60 generations).
The comparisons have been extended to 40 new
localities in Trinidad, Tobago and Venezuela,
and to new types of predator communities, ob-
taining patterns that support the original results
(Reznick et al., 1996a; Reznick et al., 1996b,
Reznick & Bryga, 1996).

Now, these results have been considered as
con"rmatory of the current life-history theory,
but they are not so. Indeed, di!erences in repro-
ductive e!ort accord with theory (Stearns, 1992).
But the traditional Smith}Fretwell kind of model
would predict no change in o!spring size when
additional unavoidable mortality is imposed on
(or relieved from) juveniles. This would also be
so, of course, in integrated models lacking our
requisite cost (like Winkler & Wallin, 1987) or
having it in a mere linear fashion (Zhang, 1998).
Thus, a nonlinear requisite cost is mandatory
here. More speci"cally, a type a C(B) function,
with a long concave (L2C/LB2(0) branch, would
explain the observed results. This is biologically
plausible in guppies, since they are viviparous
and therefore the cost required for producing the
"rst few members of the litter is probably much
bigger than the additions. With such an assump-
tion, and the almost no-predation condition (A)
as reference, we predict (or explain) the observed
patterns as follows. The C pattern (high eL , high BK ,
low eL ) results from increasing k

a
, interpreted in

this case as unavoidable predation on the adult.
The opposite R pattern (low eL , low BK , high eL )
would be the selective consequence of increasing
k
o
, unavoidable predation on juveniles.
Notice that the changes in o!spring size pre-

dicted by our model in these cases are not directly
adaptive. There is no direct bene"t in reducing
eL when predators impinge on adults, or in aug-
menting it when predators equally attack juven-
iles whatever their size. But the reduction helps to
increase the number B which compensates for
higher adult mortality, and the augmentation
helps to diminish the number of candidates to be
victimized by enemies preferring to eat the young.
We call this kind of responses indirect compensa-
tory strategies.

AVOIDABLE OFFSPRING AND UNAVOIDABLE

ADULT MORTALITY VS. UNAVOIDABLE JUVENILE

AND AVOIDABLE ADULT MORTALITY

Hart & Begon (1982) (see also Begon, 1985)
compared several life history parameters of
populations of winkles (¸ittorina rudis) from two
spatially adjacent but distinct habitats. One of
the habitats (B) had loose boulders on a solid
rock substratum, whereas the other (C) had crev-
ices and depressions in rock stacks. Individuals in
the &&boulders'' habitat were found to make
a smaller reproductive e!ort, delay maturity lon-
ger and produce more numerous, smaller young
than individuals in the &&crevice'' habitat.

Our interpretation, adopted from that ad-
vanced by Hart & Begon (1982), and further
elaborated by Begon (1985), is as follows. In
B habitat, predation and crushing by boulders
a!ect all o!spring irrespective of size, but a thick
shell in adults bestows e!ective protection
against both kinds of adversity. Thus, defense
(against avoidable sources of mortality, m

a
) re-

quires sacri"cing adult e!ort e, whereas the
juveniles face unavoidable o!spring mortality,
k
o
, which push in the same direction. A requisite

cost function with a long convex increasing
branch (L2C/LB2'0) would be required to
prompt a decrease of o!spring size eL .
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The C habitat, on the other hand, prizes o!-
spring size in competition for crevices, but adults
have di$culties in "nding slits to accommodate
them, so that they su!er unavoidable mortality
k
a
by dislodgment and predation. The latter fac-

tor favors increasing reproductive e!ort. The
avoidable character of o!spring mortality sour-
ces promotes a larger size at birth but a decrease
of eL . A long convex branch in the requisite cost
would, though, push for a compensatory increase
of eL .

Unfortunately, for this case we do not have
an intermediate &&unperturbed'' example which
could serve as reference, as the light predation
situation served for the guppies. We do not have,
either, reasons to infer the shape of the C(B)
curve.

Montague et al. (1981) presented a simple
mechanistic model of Drosophila egg production,
based on the numbers of ovarioles and the rate of
egg maturation. They thereby evaluated repro-
ductive traits in 35 Hawaiian Drosophilidae
studied by Kambysellis & Heed (1971), and
found three characteristic groups of species.
Groups 1 and 2 have relatively low reproductive
e!ort, large eggs and low clutch size. The larvae
utilize stable substrate where big larvae presum-
ably enjoy competitive advantages. The adults
face avoidable desiccation problems which re-
quire energy investment, thus demanding repro-
ductive e!ort reduction. A mainly concave C(B)
function*perhaps due to costly development of
the "rst few ovarioles*would then promote the
production of a few, large eggs. Group 3 species,
on the other hand, have high reproductive e!ort,
small eggs and high clutch. They utilize un-
predictable yet productive breeding sites. So,
females may have to retain eggs until suitable
sites are found. These, once located, should pro-
vide food for large numbers of small larvae.
Group 3 adults live in rain and cloud forest
environments with less demand for desiccation
resistance. Their reproductive e!ort can be high-
er, and the postulated type b C(B) curve could
explain small eggs.

CHANGES IN AVAILABLE ENERGY

Kawano & Masuda (1980) studied reproduc-
tive allocation in "ve populations of Heloniopsis
orientalis, an evergreen liliaceous perennial herb,
along an altitudinal gradient from lowland or
mountain forest to alpine meadows in Japan
(100, 200, 900, 1.900 and 2.600 m above sea level).
The growing season shortens progressively as the
altitude increases, from 330 to 135 days. As
Kawano and Masuda point out &&the length of the
growing season would be expected to a!ect the
total amount of energy available to the plants''
(p. 311). Thus, we have a decrease in our
parameter E.

The plants of H. orientalis allocate increasingly
greater energy to reproductive structures as elev-
ation goes up but, on the contrary, show
a marked decrease in &&reproductive capacity''
(numbers of seeds). The cost per seed (&&relative
amount of energy invested to producing a single
propagule'') increases markedly with altitude, but
the exceedingly minute size of the (wind-disper-
sed) seeds does not seem to vary. What does
increase with altitude, and apparently accounts
for the cost per propagule produced, is energy
allocation to ancillary reproductive organs such
as perianths, capsules, bracts, and scapes.

We seem to have here a case in which increas-
ing E (decreasing the altitude to have a longer
growing season) elicits a reduction of total repro-
ductive e!ort eL . Seedlings of this species probably
su!er high unavoidable mortality since the habi-
tat (closed, subclimax or climax communities)
imposes very limited e!ective recruitment. This is
one of the conditions in which our eqn (20) favors
a reduction of eL when E increases. Moreover, the
evaluation of costs per seed suggests a predomi-
nantly concave C(B) function, which in turn gives
a negative interaction between e and e. Thus, we
would expect compensation of direct and indirect
e!ects on eL , and so little selective chances in it, as
seems to be the case. Also, this species is wind-
pollinated, and this could make C(B) merely
linear, as suggested by Sakai (1996) to explain the
independence of seed size with respect to plant
size (an index of E) in Rumex acetosella, studied
by EscarreH & Thompson (1991). Such linearity of
C(B) would make eL independent of changes of
E brought about by modifying the altitude in the
Heloniopsis case discussed here.

Sakai & Sakai (1995) constructed a model of
seed size determination in which the energy
¹ available to each #ower is partially used
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(in amount A) to build up pollen capture disposi-
tives [which would determine the number of
outcrossed seeds <(A)] and the rest used to
provision the seeds. Sakai (1995) extended this
to include the numbers of #owers in the picture,
and so, total plant pollen attractiveness and total
seed production. Their model is much akin to
ours in such a division of reproductive energy,
although they used an investment paradigm,
whereas we appeal to cost production theory.
They did not consider, nevertheless, the problem
of reproductive vs survival e!ort allocation.

Sakai & Sakai (1995) and Sakai (1995, 1996)
were interested in seed size variation with the
plant resource status (our E), not predicted by the
classic Smith & Fretwell (1974) kind of model,
but observed once and again (references in Sakai
& Sakai, 1995). Several hypotheses have been
conceived to explain this (see Sakai & Sakai,
1995, Table I). Sakai & Sakai (1995) proposed,
and Sakai (1995) modi"ed, what they call the
&&fertilization e$ciency hypothesis''. Suppose the
pollen captured by a plant increases with dimin-
ishing returns as a function of allocation to
attractive structures. Then, as these structures
become larger they catch less extra pollen per
additional enlargement, and so it is more advant-
ageous to increase seed size instead of numbers.
Sakai & Sakai (1995, 1997) obtained results con-
sistent with the hypothesis in ¸ilium auratum,
Impatiens noli-tangere and <iola grypoceras.
Furthermore, Sakai (1996) found that nine re-
ported cases in which larger plants produce
larger seeds correspond to self-incompatible
and/or highly outcrossing, animal pollinated
species.

The &&pollination e$ciency hypothesis'' clearly
produces the same results (eL grows with E) in our
model*with C(B) convex or mainly so (type II
curve)*whenever increasing E favors enhancing
the reproductive e!ort eL . But there are other
possibilities produced by the hypothesis and re-
vealed by our joint allocation model. For in-
stance, when an increase of E bids for a reduction
of eL [see the analysis of our eqn (20)], Sakai's
hypothesis could predict a very slight or null
change of seed size (eL ) accompanying plant size
increase. This could be the case of the Gen-
tianaceae Sabatia angularis, studied by Dudash
(1991,1993) and showing such independence of
eL and E changes, despite being highly outcrossed
and pollen-limited. Another interesting possibili-
ty is that pollen limitation (C(B) type II) could
provoke changes in optimal seed size not induced
by an increase of E, but by the action of another
factor (unavoidable adult mortality, for instance)
that would militate for augmenting eL . Such an
indirect e!ect would link Sakai's hypothesis to
other sub-sections of this discussion.
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APPENDIX

The e!ect of an in"nitesimal change of para-
meter q

i
on eL and eL is given by
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Multiplying D and the expression between braces
in eqn (A.1) by (L2j/Le2)~1,
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and
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Expressions (A.5a) and (A.5b) are obtained by
implicit di!erentiation of Lj(e, eL ; q

i
)/Le"0.

Multiplying D and the expression between
braces in eqn (A.2) by (L2j/Le2)~1,
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expressions obtained by implicit di!erentiation
of: Lj/Le (eL , e; q

i
)"0.
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