

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

Análisis del equilibrio termodinámico en procesos de Reformado de metano con vapor, CO₂ y O₂.

Adriana García^{a*}, Estefanía López^a, Ini Ojeda^a, Norimar Becerra^a, Luis García^a, Mireya Goldwasser^b, Carmen M. López^b.

Universidad Central de Venezuela, ^aFacultad de Ingeniería, Escuela de Ingeniería Química, Apartado 48057, Caracas 1020-A, Venezuela; ^bFacultad de Ciencias, Escuela de Química Caracas, Venezuela, Apartado 47102, Caracas 1020-A

*Autor a quien dirigir la correspondencia: adriana.ucv@gmail.com

Resumen

Se realizó un análisis del equilibrio químico para el reformado de CH_4 con CO_2 , H_2O y O_2 , incluyendo 11 reacciones posibles. Las composiciones de equilibrio fueron calculadas usando el simulador PROII/Provision, por minimización de la energía libre de Gibbs. El análisis fue realizado para la relación $CH_4/O_2=2$, variando CH_4/CO_2 y CH_4/H_2O de la alimentación, para determinar la variación de la conversión y relación H_2/CO entre 600 y 1000 °C. La conversión de CH_4 es alta, con poca influencia de la temperatura y del contenido de H_2O o CO_2 . La conversión de CO_2 es mayor para el sistema sin agua alimentada y aumenta con la temperatura. La conversión de H_2O es mayor para el sistema sin CO_2 y disminuye al aumentar la temperatura. La relación H_2/CO disminuye al aumentar la temperatura, con valores mayores para los sistemas con mayor proporción de agua alimentada. El modelo termodinámico está de acuerdo con nuestros datos experimentales y resulta comparable a los reportados en la bibliografía con una desviación menor de 5%.

Palabras Claves: Composición de equilibrio, reformado de CH₄, gas de síntesis

Abstract

The chemical equilibrium analysis on CH_4 - reforming with CO_2 , H_2O and O_2 has been conducted, including 11 possible reactions. Equilibrium compositions were calculated using a simulator PRO II/Provision, by Gibbs energy minimization. The analysis was performed to ratio $CH_4/O_2 = 2$, varying CH_4/H_2O and CH_4/CO_2 in feed to determine the variation of conversion and H_2/CO ratio between 600 and 1000 ° C. CH_4 conversion is high, with little influence on the temperature and the content of H_2O and CO_2 . CO_2 conversion is greater for the system without feed water and increases with temperature. H_2O conversion is greater for the system without CO_2 and decreases with increasing temperature. The H_2/CO ratio decreases with increasing temperature, with values higher for systems with higher proportion of feed water. The thermodynamic model agrees with our experimental data and is comparable with those reported in the literature with a deviation of less than 5%.

Keywords: Equilibrium compositions, CH₄-reforming, syngas.

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

Introducción

La reformación de metano es un proceso industrial importante para la producción de hidrógeno y/o gas de síntesis. Son posibles varias vías para esta reacción: (i) reformación de metano con vapor (RMV); (ii) reformación de metano con CO₂, llamada reformación seca (RSM) y (iii) oxidación parcial catalítica de metano (OPM). La composición del gas de síntesis (relación H₂/CO) depende de la reacción, de acuerdo a las siguientes ecuaciones:

(1)
$$CH_4 + H_2O \longrightarrow CO + 3H_2$$
 $(\Delta H_r = 206 \text{ kJ/mol})$ (RMV)

(2)
$$CH_4 + CO_2 \longrightarrow 2CO + 2H_2 \ (\Delta H_r = 264 \, kJ \, / \, mol)$$
 (RSM)

(3)
$$CH_4 + 1/2O_2 \longrightarrow CO + 2H_2 (\Delta H_r = -36kJ/mol)$$
 (OPM)

Industrialmente, el gas de síntesis se produce mediante la RMV [1], este proceso es costoso debido a la alta demanda de calor por la marcada endotermicidad de la reacción. La RSM es un proceso beneficioso desde el punto de vista ambiental, y con materia prima abundante a partir de las reservas de gas natural con cantidades sustanciales de CO₂, este proceso también consume mucha energía, y con una rápida desactivación del catalizador por la formación de coque. El carácter exotérmico de la OPM, le confiere ventajas en cuanto al menor consumo de energía, esta reacción está siempre acompañada de la oxidación total (OTM), que produce H₂O y CO₂ (Ecuación 4), además de ocasionar puntos calientes en el catalizador.

(4)
$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$
 $(\Delta H_r = -802 \text{ Kj/mol})$ (OTM)

De las reacciones anteriores, surgen otras posibilidades basadas en la combinación de reacciones exotérmicas de oxidación, y las reacciones endotérmicas RMV y RSM. El propósito es suministrar el calor requerido por las reacciones endotérmicas, a partir del calor liberado por las exotérmicas. De este modo ha surgido mucho interés en el estudio de sistemas combinados de RMV ó RSM con reacciones de oxidación [1,2], denominadas como Reformado Autotérmico de metano (RATM); se han reportado también estudios de reformación con H₂O y CO₂ [3]. En la bibliografía, existe un número importante de trabajos sobre sistemas de RATM con CO₂ ó con vapor, incluyendo estudios de análisis termodinámicos de estos sistemas [4]. Sin embargo, los estudios de sistemas que usen CO₂, vapor y oxígeno parecen ser escasos. Este sistema se considera interesante, ya que tendría la ventaja de los procesos autotérmicos con O₂, además de permitir una relación H₂/CO flexible.

En el presente trabajo se muestra un análisis termodinámico del efecto de la composición de la alimentación y la temperatura de reacción, sobre la reformación autotérmica de metano con CO₂, vapor y O₂, usando el método de minimización de la energía libre de Gibbs del sistema, empleando como herramienta de cálculo un simulador comercial.

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

Materiales y métodos

Los cálculos de equilibrio fueron realizados con el simulador comercial PRO/II de la empresa SIMSCI-Invensys, empleando el método de minimización de la energía libre de Gibbs. Los pasos seguidos para el cálculo fueron los siguientes:

- (i) Definición de los compuestos involucrados; reactivos, productos, inertes.
- (ii) Selección del modelo termodinámico de Soave-Redlich-Kwong, recomendado para hidrocarburos livianos y sistemas con hidrógeno [5].
- (iii) Seleccionar la unidad de Reactor de Gibbs, con una corriente de entrada y una de salida.
- (iv) Definir las condiciones de la corriente de entrada.
- (v) Definir temperatura en el reactor como la temperatura de reacción.
- (vi) Definir un caso de estudio, en un intervalo de temperatura.
- (vii) Realizar la corrida y repetir el cálculo con otras condiciones de entrada.

Además de las reacciones (1) a (4), el sistema de reacción considerado es muy complejo, ya que están presentes otras reacciones tales como [6]:

(5)
$$CO + H_2O \longrightarrow CO_2 + H_2$$
 (desplazamiento de gas de agua)
(6) $2CO \longrightarrow C + CO_2$ (Reacción de Boudouard)
(7) $CH_4 \longrightarrow C + 2H_2$ (craqueo de metano)
(8) $C + H_2O \longrightarrow CO + H_2$ (gasificación de carbón)
(9) $CH_4 + 2H_2O \longrightarrow CO_2 + 4H_2$ (reformado con vapor a CO_2)
(10) $CO_2 + 2H_2 \longrightarrow C + 2H_2O$ (formación de carbón)
(11) $CH_4 + 2CO \longrightarrow 3C + 2H_2O$ (formación de carbón)

Las corridas de simulación, permiten obtener datos de composición de equilibrio de los diferentes componentes (moles), a partir de los cuales se calculó la conversión de equilibrio para CH₄, CO₂ y H₂O y la relación molar H₂/CO, en un intervalo de temperatura de 600 a 1000 °C, una presión de 1 atm y las siguientes relaciones molares de la alimentación, CH₄/O₂ =2; CH₄/CO₂ = 1,2,3, 4, ∞ y CH₄/H₂O= 0.25, 1.2, 4, ∞ .

Resultados y discusión

Variación del ΔG en función de la temperatura para las reacciones consideradas. Es conocido que el cambio de energía libre de Gibbs, ΔG , es un parámetro que indica la espontaneidad de la reacción, con un valor negativo para las reacciones espontaneas. En la Tabla 1, se muestra la dependencia del ΔG de reacción con la temperatura entre 327 y 1027 °C, determinada usando los valores de ΔG^0 de los componentes involucrados en las reacciones.

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

Tabla 1: Valores de ΔG en función de la temperatura para las reacciones (1) a (11)

Reacción	ΔG =f(T); T en °C	Favorecida a
1	ΔG = -0.059T+36.616	T> 625 °C
2	ΔG = -0.0678T+ 43.482	T > 645 °C
3	ΔG= -0.0471T-18.277	Todas T
4	ΔG = -0.0027T-189.82	Todas T
5	ΔG= 0.0088T- 6.8659	T< 780 °C
6	∆G= 0.0416T- 29.134	T < 700 °C
7	ΔG= - 0.0262T+ 14.349	T > 550 °C
8	ΔG= - 0.0329T+ 22.268	T > 680 °C
9	∆G= - 0.0503T+ 29.75	T > 595 °C
10	ΔG= 0.0241T- 15.402	T< 640 °C
11	∆G= 0.0395T- 30.187	T < 765 °C

A partir de los datos de ΔG de la Tabla 1, se tiene que las reacciones de reformado de metano (1), (2), (9) y las reacciones de craqueo de metano (7) y gasificación de carbón (8), están favorecidas termodinámicamente a temperaturas altas (> 550°C), mientras que la reacción de desplazamiento de gas de agua (5), Boudouard (6) y las de formación de carbón están favorecidas a menores temperaturas (T < 780 °C). Las reacciones de oxidación están favorecidas para todas las temperaturas.

Influencia de la incorporación de CO₂:

En el sistema combinado estudiado se varió la relación molar CH₄/CO₂ de la alimentación, manteniendo constante la relación molar CH₄/O₂ y CH₄/H₂O en 2 y 4 respectivamente, a fin de observar la influencia de la incorporación de CO₂ en el reformado autotérmico con H₂O y O₂. La conversión de equilibrio de metano incrementa con el aumento de temperatura, con poca influencia de la relación molar CH₄/CO₂ de la alimentación, tal como se puede observar en la Figura 1.a, donde se incluye el sistema sin CO₂ alimentado (CH₄/CO₂ infinito). La curva muestra el comportamiento característico de las reacciones endotérmicas en función de la temperatura. Este comportamiento se puede explicar, asumiendo que en primer lugar parte del metano reacciona principalmente por OTM con el oxígeno presente, y luego el metano remanente puede transformarse de acuerdo a las reacciones (1), (2), (7), (9) y (11), favorecidas a altas temperaturas.

La conversión de CO₂ en función de la temperatura, para las diferentes relaciones CH₄/CO₂, se presenta en la Figura 1.b. Se puede observar valores negativos de la conversión de CO₂ para las mayores relaciones CH₄/CO₂, debido a que el CO₂ generado por la OTM es mayor que el CO₂ en la corriente de alimentación, en particular para las relaciones molares CH₄/CO₂ mayores que la relación molar

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

CH₄/O₂. La conversión de CO₂ tiende a aumentar al incrementar la temperatura. Para la relación molar CH₄/CO₂ de 1, las conversiones de CO₂ son positivas en el intervalo de temperatura considerado. Estos valores se obtienen una vez que el CO₂ alimentado más el generado, comienza a ser consumido en las diferentes reacciones tales como RSM y las reacciones inversas de desplazamiento de gas de agua y de Boudouard, favorecidas a partir de 600 °C (ver Tabla 1). Los valores positivos de conversión de CO₂, se obtienen a menor temperatura para la relación molar CH₄/CO₂ de 1, ya que esta implica la menor cantidad de metano alimentada y por lo tanto la menor cantidad de CO₂ generado por OTM, reacción muy favorecida termodinámicamente y prácticamente irreversible, en todo el intervalo de temperatura. La cantidad de CO₂ generado será proporcional a la cantidad de metano alimentada, estando limitada por la cantidad de O₂ presente.

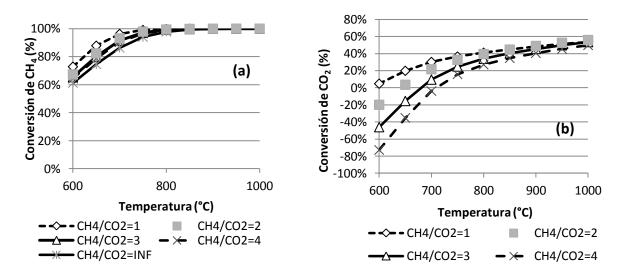


Figura 1: Influencia de la temperatura y de la relación molar CH₄/CO₂ en la conversión de metano (a) y en la conversión de CO₂ (b).

Al evaluar la conversión de agua se observa que las mayores conversiones se obtienen cuando no hay CO₂ alimentado (CH₄/CO₂ inf), a medida que aumenta la proporción de CO₂ en la alimentación, la conversión de agua disminuye, a valores negativos para las relaciones molares CH₄/CO₂ analizadas (ver Figura 2.a). Este comportamiento se puede atribuir a dos factores: una posible competencia entre las reacciones (1), (2) y (3) y el sentido de en qué se lleve a cabo la reacción de desplazamiento de gas de agua (5). A 600° C la conversión de agua es negativa para todas las relaciones molares evaluadas, indicando que prevalecen reacciones como la OTM (4) que genera H₂O y CO₂, a medida que aumenta la temperatura, en el caso donde no hay CO₂ en la alimentación se favorecen en mayor proporción las reacciones (5) y (1) aumentando la conversión de agua y

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

permaneciendo constante a partir de 780 °C. Al aumentar el contenido de CO_2 en la alimentación la reacción (5) se lleva a cabo en una menor proporción hasta los 780 °C, a partir de esta temperatura la reacción (5) cambia de dirección favoreciendo el consumo de CO_2 y la producción de agua, generando un notable descenso de la conversión de agua para la relación $CH_4/CO_2=1$.

Las mayores relaciones molares H_2/CO se obtienen para el caso sin CO_2 alimentado. De forma general al aumentar la temperatura, la relación H_2/CO disminuye ya que se favorecen las reacciones que generan CO frente a las que generan H_2 . Cuando se alimenta CO_2 , la disminución de la relación molar H_2/CO es mayor. Al aumentar la temperatura, se favorecen las reacciones inversas de Boudouard (6) que implican formación de CO sin formación de CO, y la reacción inversa de desplazamiento de gas de agua (5) que implica consumo de CO y CO0 para formación de CO0 y CO0, explicando de esta manera el comportamiento observado. Para la relación molar CO1 se puede decir que a partir de CO2 prevalece la CO3 con una relación molar CO4.

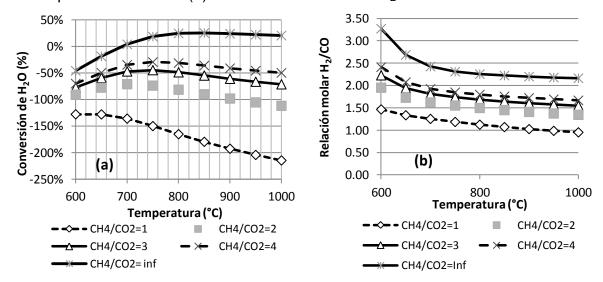


Figura 2: Influencia de la temperatura y la relación molar CH₄/CO₂ en la conversión de H₂O (a) y en la relación H₂/CO (b).

El efecto de la relación molar CH_4/H_2O sobre la conversión de CH_4 y CO_2 en función de la temperatura se muestra en la Figura 3, con una relación molar $CH_4/CO_2 = 1$. Para las relaciones molares CH_4/H_2O de 1.2, 4 e infinito (sistema sin agua), la conversión de CH_4 aumenta de 70% a 600 °C hasta 100 % a partir de 750 °C, mientras que para la relación molar CH_4/H_2O de 0,25, que implica la mayor cantidad de agua alimentada, la conversión es completa en todo el intervalo de temperatura analizado (Figura 3.a).

Las mayores conversiones de CO₂ se obtienen para la relación molar CH₄/H₂O infinito, aumentando al incrementar la temperatura con un máximo de 60% a 1000

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

°C. Al incorporar agua en la alimentación, la conversión de CO₂ disminuye, obteniendo solo valores negativos para CH₄/H₂O de 1.2 y 0,25, aumentando al incrementar la temperatura. La ausencia de H₂O en la alimentación favorece las reacciones (1) y la inversa de la reacción (5), que implican consumo de CO₂. Al incorporar H₂O, se pueden favorecer la reacción (9) que genera CO₂, ocasionando conversiones negativas de este componente (ver Figura 3.b).

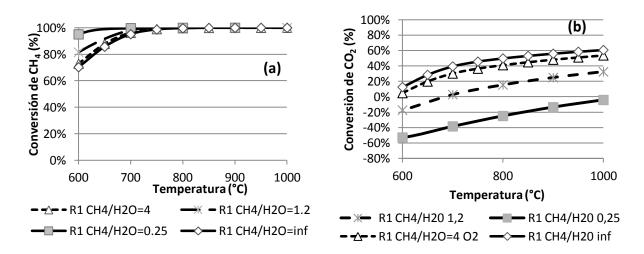


Figura 3: Influencia de la temperatura y relación CH₄/ H₂O sobre la conversión de CH₄ (a) y de CO₂ (b) para relación CH₄/CO₂=1.

La conversión de H_2O presentó valores positivos solo para la menor relación molar CH_4/H_2O , con un máximo de 15% a 600 °C, para las otras relaciones molares CH_4/H_2O se obtuvieron valores negativos de conversión. En todos los casos la conversión de H_2O disminuye al aumentar la temperatura, contrario a lo observado para el CO_2 , evidenciando la relación inversa entre estas dos conversiones (Figura 4.a). La relación molar H_2/CO es mayor al aumentar la relación molar CH_4/H_2O , y disminuye al aumentar la temperatura. Para los casos donde hay mayor cantidad de metano que de agua, la relación molar H_2/CO tiende a 1, indicando que se favorece principalmente la RSM. En particular las reacciones inversas de desplazamiento de gas de agua y de Boudouard, son muy influyentes al aumentar la temperatura (Figura 4.b).

En nuestro grupo de trabajo, se han realizado diversas pruebas con catalizadores de perovskitas, en sistemas combinados, CO₂-O₂; H₂O-O₂ y CO₂-H₂O-O₂ [7-8]. En todos los casos hemos obtenido valores experiementales de conversión menores a los predichos por el análisis termodinámico. Además el modelo de cálculo usado ha sido validado con modelos reportados [4], con diferencias menores de 5%.

3-8, Noviembre 2013, Maracaibo, Estado Zulia ISBN: 978-980-12-3931-4. Depósito Legal: LFX13820095402899.

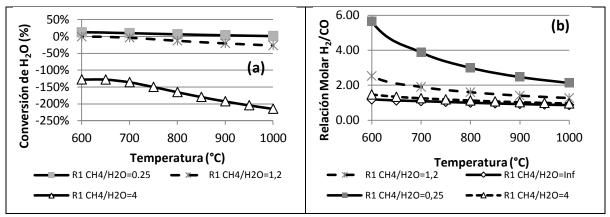


Figura 4: Influencia de la temperatura y relación molar CH_4/H_2O sobre la conversión de H_2O (a) y la relación molar H_2/CO (b) para relación molar $CH_4/CO_2=1$.

Conclusiones

El análisis termodinámico del sistema refleja que la temperatura y del contenido de H_2O o CO_2 tiene poca influencia en la conversión de CH_4 . La conversión de CO_2 es mayor para el sistema sin agua alimentada y aumenta con la temperatura. La conversión de H_2O es mayor para el sistema sin CO_2 y disminuye al aumentar la temperatura. La relación H_2/CO aumenta a mayor proporción de agua alimentada.

Agradecimientos

Al CDCH-U.C.V por el financiamiento y a Invensys por la donación de licencias educativas del simulador SIMSCI Pro/II a la Escuela de Ingeniería Química de la U.C.V.

Referencias bibliográficas.

- 1. FOO S., CHENG CH., NGUYEN T., ADESINA A. *Int. J. Hyd. Energ.* 37(22): 17019-17026.2012.
- 2. LAOSIRIPOJANA N., CHADWICK D., ASSABUMRUNGRAT S., **Chem. Eng. J.,** 138(2-3): 264-273.2008.
- 3. KOO Y., ROH H., JUNG U., YOON W., Catal. Today, 185(1): 126-130. 2012.
- 4. AMIN N., YAW T., *Int. J. Hyd. Energ.* 32(12): 1789-1798. 2007.
- 5. SANDLER S., Chemicals and engineering thermodynamics. 3ra Edición Editorial John Wiley & Sons Inc. Estados Unidos. 1998.
- 6. HOU K., HUGHES R., Chem. Eng. J., 82 (1-3): 311-328.2001.
- 7. GARCIA A., GARCIA L., LOPEZ E., BECERRA N., OJEDA I., GOLDWASSER M., LOPEZ ., **Avances en Química** 5 (2): 87-93. 2010.
- 8. GARCIA A., BECERRA N., GARCIA L., OJEDA I., LOPEZ E., LOPEZ C., GOLDWASSER M., Advances in Chemical Engineering Science 4 (4): 169-175. 2011.